
GS Collections

User Reference Guide

Copyright © 2011 Goldman Sachs. All Rights Reserved.

Version 1.2.0 (03/14/2012)

Contact: gs-collections@gs.com

GS Collections

GS Collections | TOC

3

Contents
About GS Collections..5

Chapter 1: Iteration patterns..7
Common iteration patterns... 8

Select/Reject pattern...8
Collect pattern.. 10
Short-circuit patterns.. 13
ForEach pattern.. 15
InjectInto pattern.. 16

RichIterable.. 17
Lazy iteration..17
RichIterable methods..18

Map iteration methods..24
Creating iterable views of maps... 24
Collecting entries..24
Finding, testing and putting values.. 25

Chapter 2: Collections and containers...27
Basic collection types...28

MutableList.. 28
MutableSet... 29
MutableMap... 30
MutableBag.. 30
Multimap.. 31

Creating and converting collections...32
Protecting collections... 32

Immutable collections.. 32
Protective wrappers.. 34

Chapter 3: Code blocks... 35
Common code block types... 36

Predicate... 36
Function..37
 Procedure...37

Chapter 4: Utility GS Collections...41
Utility iteration patterns... 42
Parallel iteration... 43

 GS Collections | TOC

4

5

About GS Collections

A collections framework for Java based on Smalltalk patterns.

GS Collections is a library of collection-management utilities that work with the Java Collections Framework (JCF).
GS Collections offers JCF-compatible implementation alternatives for List, Set and Map. It also introduces a host of
new features including Multimaps and Bags, lazy evaluation, immutable containers, and parallel iteration utility.

GS Collections leverages the idea of internal iteration - putting collection-handling methods on the collection classes,
a concept derived from the Smalltalk language. Internal iteration affords a more consistent and intuitive approach
to using collections by encapsulating the details of how various iteration patterns are implemented. Hiding this
complexity lets you write more readable code with less duplication.

About this guide

This Guide is an introduction to basic GS Collections concepts and its commonly-used features. It provides a high-
level survey of the GS Collections library and its capabilities. The topics covered are:

• Iteration patterns: the logic underlying GS Collections methods.
• Collections & containers: the JCF compatible collection types and new containers introduced in GS Collections.
• Code blocks: a function that can be passed around as data.
• Utilities: Factory classes, static methods, and other features of the library.

 GS Collections | About GS Collections

6

7

Chapter

1
Iteration patterns

Topics:

• Common iteration patterns
• RichIterable
• Map iteration methods

GS Collections extends the Java Collections Framework with new interfaces
and classes and provides additional methods. These new methods implement
iteration patterns derived from the collection protocol of the Smalltalk
language (e.g., select, reject, collect, detect).

In idiomatic Java, iteration is performed by external for and while loops
that enclose a block of business logic to be performed on each element of a
collection. This is an approach that often leads to much duplication of code
structure.

In GS Collections, business logic is reified as a code block: a class that is
passed as a parameter to an iteration method. Each implementation of an
iteration method iterates over the collection, passing each element to the code
block for processing.

The most important advantage of internal iteration patterns is that they
increase readability by giving names to the structural iteration patterns and
by reducing code duplication. Moreover, by encapsulating implementation
within specialized collection types (e.g., list, sets, maps), iteration can be
optimized for the particular type.

 GS Collections | Iteration patterns

8

Common iteration patterns
The most commonly-used iteration patterns in GS Collections are:

• Filtering patterns:

• Select
• Reject
• Partition

• Transforming patterns:

• Collect
• Flatten
• GroupBy

• "Short-circuit" patterns:

• Detect
• AnySatisfy
• AllSatisfy

• Generic action patterns:

• ForEach
• InjectInto

Select/Reject pattern
Filter a collection to create a new collection: includes select, reject, and

partition.

Methods using the Select pattern return a new collection comprising those elements from the source collection that
satisfy some logical condition; Reject is the inverse pattern, returning a new collection of elements that do not satisfy
the condition. The condition is a boolean expression in the form of single-argument code block that implements the
Predicate interface.

Select pattern examples:

Pseudocode create <newcollection>
 for each <element> of <collection>
 if condition(<element>)
 add <element> to <newcollection>

JDK
List<Integer> greaterThanFifty = new ArrayList<Integer>();
for (Integer each : list)
{
 if (each.intValue() > 50)
 {
 greaterThanFifty.add(each);
 }
}

Select, using an anonymous inner class as a code block:

GSC
MutableList<Integer> greaterThanFifty =
 list.select(new Predicate<Integer>()

GS Collections | Iteration patterns

9

 {
 public boolean accept(Integer each)
 {
 return each > 50;
 }
 });

Here, a Predicate is created using the Predicates factory:

GSC
list.select(Predicates.greaterThan(50));

Here is an example of GS Collections using the proposed Lambda support that is being built in Java 8:

GSC
List<Integer> greaterThanFifty =
 list.select(each - > each > 50);

Reject pattern examples:

Pseudocode create <newcollection>
 for each <element> of <collection>
 if not condition(<element>)
 add <element> to <newcollection>

JDK
List<Integer> notGreaterThanFifty = new ArrayList<Integer>();
for (Integer each : list)
{
 if (each <= 50)
 {
 notGreaterThanFifty.add(each);
 }
}

GSC
list.reject(Predicates.greaterThan(50));

Select and Reject methods

These GS Collections methods implement the Select and Reject pattern:

select(Predicate)

reject(Predicate)

The Predicate is evaluated for each element of the collection. The selected elements are those where the Predicate
returned true (false for rejected). The selected (or rejected) elements are returned in a new collection of the same
type.

select(Predicate, targetCollection)

reject(Predicate, targetCollection)

Same as the select()/reject() methods with one argument, but results are added to the specified targetCollection.

selectWith(Predicate2, argument)

rejectWith(Predicate2, argument)

For each element of the collection, Predicate2 is evaluated with the element as one argument, plus one additional
argument; selected elements are returned in a new collection of the same type. See Reusing a code block for more
information.

selectWith(Predicate2, argument, targetCollection)

 GS Collections | Iteration patterns

10

rejectWith(Predicate2, argument, targetCollection)

Same as the selectWith()/rejectWith() methods, but results are added to the specified targetCollection.

Partition pattern
Create two collections using Select and Reject.

The Partition pattern allocates each element of a collection into one of two new collections depending on whether the
element satisfies the condition expressed by the Predicate. In effect, it combines the Select and Reject patterns. The
collections are returned in a PartitionIterable specialized for the type of the source collection. You can retrieve the
selected and rejected elements from the PartitionIterable. In this example, the list of people is partitioned into lists of
adults and children.

GSC
MutableList<Person> people =...
PartitionMutableList<Person> partitionedFolks = people.partition(
 new Predicate<Person>()
 {
 public boolean accept(Person each)
 {
 return each.getAge() >= 18;
 }
 });
MutableList<Person> adults = partitionedFolks.getSelected();
MutableList<Person> children = partitionedFolks.getRejected();

Partitioning Methods

partition(Predicate)

Filters the collection into two separate new collections (selected and rejected), based on Predicate. The collections
are returned in a specialized PartitionIterable of the same type as the source collection.

Collect pattern
Transform a collection's elements, creating a new collection: includes

collect, flatCollect, and groupBy.

The Collect pattern methods return a new collection whose data elements are the results of an evaluation performed
by the code block; that is, each element of the original collection is mapped to a new object, which is usually a
different type. The code block used as the collect method's parameter implements the Function interface.

Pseudocode create <newcollection>
 for each <element> of <collection>
 <result> = transform(<element>)
 add <result> to <newcollection>

JDK
List<Address> addresses = new ArrayList<Address>();

for (Person person : people)
{
 addresses.add(person.getAddress());
}

GSC
MutableList<Person> people =...;

Function<Person, Address> addressFunction =
 new Function<Person, Address>()
 {
 public Address valueOf(Person person)
 {

GS Collections | Iteration patterns

11

 return person.getAddress();
 }
 };

MutableList<Address> addresses = people.collect(addressFunction);

Notice that this assumes each person in the people collection has just one address. If, instead, a person has multiple
addresses, the Function returns a list of addresses for each person (a list that has only one element if the person has
just one address); the result is a List of Lists:

GSC
MutableList<Person> people =...;

Function<Person, MutableList<Address>> addressFunction =
 new Function<Person, MutableList<Address>>()
 {
 public MutableList<Address> valueOf(Person person)
 {
 return person.getAddresses();
 }
 };
MutableList<MutableList<Address>> addresses =
 people.collect(addressFunction);

Other Collect-style patterns

GS Collections provides two specialized variations on the Collect pattern: Flatten and GroupBy. Both patterns, like
Collect, use an code block implementing a Function to access and transform element values and return a collection.

Collect methods

These GS Collections methods implement the Collect pattern:

collect(Function)

For each element of the collection, the Function is evaluated with the current element as the argument; returns a
new collection of the same size and the transformed type.

collect(Function, targetCollection)

Same as collect, except that the results are added to the specified targetCollection.

collectIf(Predicate, Function)

Same as collect, except that the Predicate is first evaluated with the element as the argument to filter the collection.

collectIf(Predicate, Function, targetCollection)

Same as collectIf, except that the results are added to the specified targetCollection.

collectWith(Predicate2, argument2)

Same as collect, but the Predicate2 is evaluated with the element as one argument, plus one additional argument;
returns a new collection of the same size and the transformed type.

collectWith(Predicate2, argument2, targetCollection)

Same as collectWith, except that the results are added to a specified targetCollection.

 GS Collections | Iteration patterns

12

Flatten pattern
Create a single, linear collection from selected values of a collection's

elements.

The Flatten pattern is a specialized form of the the Collect pattern. It returns a single-level, or "flattened," collection
of attribute values from a source collection's elements.

flatCollect(Function)

Extract (and, optionally, transform) a selected attribute value from each of the calling collection's elements and add
the values to a new single-level collection (e.g., a List or Set).

Given list of people (as in the Collect example), here is how flatCollect could be used to create a flat list from the
address fields of the person objects in that list, using the same Function (addressFunction):

Pseudocode create <newcollection>
 for each <element> of <collection>
 <results> = transform(<element>)
 Add all <results> to <newcollection>

JDK
List<Address> addresses = new ArrayList<Address>();
for (Person person : people)
{
 addresses.addAll(person.getAddresses());
}

GSC
MutableList<Address> addresses = people.flatCollect(addressFunction);

Note the flatCollect method's similarity to a collect method having the same signature: each method's Function
parameter maps to an Iterable type. This is optional for collect, but required of flatCollect. Both methods return a
new collection. The difference is that collect in this form creates a collection of collections from a simple List, Set or
Bag, while flatCollect performs a different (and in this instance, somewhat more useful) action, returning a flat list of
addresses.

GroupBy pattern
Create a Multimap from a collection by grouping on a selected or

generated key value.

The GroupBy pattern gathers the elements on the collection into a map-like container called a Multimap, which
associates multiple values for each key. The Function is applied to each element and the result is used as the key into
the Multimap. The elements are traversed in the same order as they would be in a ForEach pattern .

groupBy(Function)

Group the elements into a new Multimap. Uses the Function to get the key for each element.

groupBy(Function, targetMultimap)

Same as groupBy except that results are added to the specified targetMultimap.

groupByEach(Function)

Same as groupBy except that the Function transforms each value into multiple keys, returning a new Multimap
containing all the key/value pairs.

GS Collections | Iteration patterns

13

Short-circuit patterns
Methods that control processing by testing a collection for a logical

condition: includes detect, anySatisfy, and allSatisfy.

The "short-circuit" patterns - Detect, AnySatisfy and AllSatisfy - are so called because they describe methods that
cease execution when a specific condition is met. With each iteration, the Predicate is evaluated. If the evaluation
resolves as a specified boolean (true/false) value, then iteration halts and returns the appropriate value.

Detect pattern
Finds and returns the first element that satisfies a given logical

expression.

Detect returns the first element that satisfies a Predicate. If no true evaluation occurs, all elements in the collection
are tested and the method returnsnull.

Pseudocode for each <element> of <collection>
 if condition(<element>)
 return <element>

JDK
for (int i = 0; i < list.size(); i++)
{
 Integer v = list.get(i);
 if (v.intValue() > 50)
 {
 return v;
 }
 return null;
}

GSC
list.detect(Predicates.greaterThan(50));

Detect methods

detect(Predicate)

Return the first element of the collection for which Predicate evaluates as true when given that element as an
argument; if no element causes Predicate to evaluate as true, the method returns null.

detectIfNone(Predicate, Function0)

Same as detect, but if no element causes Predicate to evaluate as true, return the result of evaluating Function0.

AnySatisfy pattern
Determine if any collection element satisfies a given logical expression.

The AnySatisfy- method tests for the first occurrence of an element that the Predicate evaluates as true. If such an
element is found, execution halts and the method returns true; otherwise, the it returns false.

Pseudocode for each <element> of <collection>
 if condition(<element>)
 return true
 otherwise return false

JDK
for (int i = 0; i < list.size(); i++)
{
 Integer v = list.get(i);
 if (v.intValue() > 50)

 GS Collections | Iteration patterns

14

 {
 return true;
 }
}
return false;

GSC
return list.anySatisfy(Predicates.greaterThan(50));

AnySatisfy methods

anySatisfy(Predicate)

Return true if the Predicate evaluates as true for any element of the collection. Otherwise (or if the collection is
empty), return false.

anySatisfyWith(Predicate2, parameter)

Return true if the Predicate2 evaluates as true for any element of the collection. Otherwise (or if the collection is
empty), return false.

AllSatisfy pattern
Determine if all collection elements satisfy a given logical expression.

The AllSatisfy-pattern method determines whether all elements satisfy the Predicate; that is, it seeks the first element
that evaluates as false for the given predicate. If such as element is found, execution halts and the method returns
false. Otherwise, the method returns true.

Pseudocode
for each <element> of <collection>
 if not condition(<element>)
 return false
 otherwise return true

JDK
for (int i = 0; i < list.size(); i++)
{
 Integer v = list.get(i);
 if (v.intValue() <= 50)
 {
 return false;
 }
}
return true;

GSC
return list.allSatisfy(Predicates.greaterThan(50));

AllSatisfy methods

allSatisfy(Predicate)

Return true if the Predicate evaluates as true for all elements of the collection. Otherwise (or if the collection is
empty), return false.

allSatisfyWith(Predicate2, parameter)

Return true if the Predicate2 evaluates as true for all elements of the collection. Otherwise (or if the collection is
empty), return false.

GS Collections | Iteration patterns

15

ForEach pattern
Perform a calculation on each element of the current collection.

The ForEach pattern defines the most basic iteration operation that can be used with all collection types. Unlike the
other patterns discussed in this topic, the ForEach pattern prescribes methods that operate on each element of the
calling collection object, with no value returned by the method itself.

In GS Collections, the forEach method offers the most straightforward replacement for the Java for loop. It executes
the code in a Procedure on each element. You can use these methods to perform some action using the values of the
source collection - for example, to print a value or to call another method on each element.

Pseudocode for each <element> of <collection>
 evaluate(<element>)

JDK
for (int i = 0; i < list.size(); i++)
{
 this.doSomething(list.get(i));
}

GSC
list.forEach(new Procedure()
{
 public void value(Object each)
 {
 doSomething(each);
 }
});

ForEach methods

forEach(Procedure)

For each element, the code block is evaluated with the element as the argument.

forEachIf(Predicate, Procedure)

For each element where Predicate evaluates as true, Procedure is evaluated with the current element as the
argument.

forEach(Procedure, fromIndex, toindex)

Iterates over the section of a MutableList covered by the specified inclusive indexes.

forEachWith(Procedure2, parameter)

For each element of the collection, the code block is evaluated with the element as the first argument, and the
specified parameter as the second argument.

forEachWithIndex(ObjectIntProcedure)

Iterates over a collection passing each element and the current relative int index to the specified instance of
ProcedureWithInt

forEachWithIndex(ObjectIntProcedure, fromIndex, toIndex)

Iterates over the section of the list covered by the specified inclusive indexes.

 GS Collections | Iteration patterns

16

InjectInto pattern
Calculate and maintain a running value during iteration; use each

evaluated result as an argument in the next iteration.

The InjectInto pattern is used to carry a computed result from one iteration as input to the next. In this pattern, the
injectInto method takes an initial injected value as a parameter. This value is used as the first argument to a two-
argument code block; the current element (for each iteration of the collection) is taken as the second argument.

For each iteration, the code block's evaluation result is passed to the next iteration as the first argument (the injected
value) of the code block, with the (new) current element as the second argument. The injectInto() method returns the
code block's cumulative result upon the final iteration.

Pseudocode set <result> to <initialvalue>
 for each <element> of <collection>
 <result> = apply(<result>, <element>)
 return <result>

JDK
List<Integer> list = Lists.mutable.of(1, 2);
int result = 5;
for (int i = 0; i < list.size(); i++)
{
 Integer v = list.get(i);
 result = result + v.intValue();
}

GSC
Lists.mutable.of(1, 2).injectInto(3, AddFunction.INTEGER);

InjectInto methods

injectInto(injectedValue, Function2)

Return the final result of all evaluations using as the arguments each element of the collection, and the result of the
previous iteration's evaluation.

injectInto(intInjectedValue, IntObjectToIntFunction)

Return the final result of all evaluations using as the arguments each element of the collection, and the result of the
previous iteration's evaluation.

injectInto(intValue, IntObjectToIntFunction)

Return the final result of all evaluations using as the arguments each element of the collection, and the result of the
previous iteration's evaluation. The injected value and final result are both primitive ints.

injectInto(longValue, LongObjectToLongFunction)

Return the final result of all evaluations using as the arguments each element of the collection, and the result of the
previous iteration's evaluation. The injected value and result are both primitive longs.

injectInto(doubleValue, DoubleObjectToDoubleFunction)

Return the final result of all evaluations using as the arguments each element of the collection, and the result of the
previous iteration's evaluation. The injected value and result are both primitive doubles.

GS Collections | Iteration patterns

17

RichIterable
RichIterable is the most important interface in GS Collections. It provides the blueprint for all non-mutating iteration
patterns. It represents an object made up of elements that can be individually and consecutively viewed or evaluated
(an iterable), and it prescribes the actions that can be performed with each evaluation (the patterns). The most
commonly used implementations include FastList and UnifiedSet.

RichIterable is extended by ListIterable, SetIterable, Bag, and MapIterable. MapIterable is iterable on its values
using the RichIterable API.

RichIterable is also extended by MutableCollection, and indirectly by MutableList and MutableSet (which
also extend the mutable Java Collection types List and Set). Another subinterface defines a non-JDK container,
MutableBag (or multiset); yet another, ImmutableCollection, delineates the immutable forms of these GS Collections
containers. These latter two interfaces are detailed in the next topic.

The subinterface LazyIterable for the most part replicates RichIterable, but overrides some specific collection-
returning methods - collect, collectIf, select, reject, and flatCollect - so that they delay their actual execution until
the returned collection is needed, a technique called "lazy iteration."

Lazy iteration
Deferring evaluation until necessary.

Lazy iteration is an optimization pattern in which an iteration method is invoked, but its actual execution is deferred
until its action or return values are required by another, subsequent method. In practical terms, the objective is
typically to forestall unnecessary processing, memory use, and temporary-object creation unless and until they are
needed. Lazy iteration is implemented as an adapter on the current RichIterable collection by this method:

richIterable.asLazy() Returns a deferred-evaluation iterable. (Note the list
below of other GS Collections methods that return lazy
Iterables.)

In a way, lazy iteration is a companion to the short-circuit iteration pattern described earlier, in which iteration
ceases as soon the method's purpose is achieved. In the last line of the example below, the anySatisfy() method
quits execution when it detects the "address2" element in the addresses list created by collect(). The third element
("address 3") is never examined by anySatisfy - although it was present in addresses.

GSC
 Person person1 = new Person(address1);
 Person person2 = new Person(address2);
 Person person3 = new Person(address3);
 MutableList<Person> people =
 FastList.newListWith(person1, person2, person3);
 MutableList<MutableList<Address>> addresses =
 people.collect(addressFunction);
 Assert.assertTrue(addresses.anySatisfy(Predicates.equal(address2)));

One excess element out of three may be trivial, but if people were to be very long list (or a stream), anySatisfy will
still have to wait for the collect method to finish aggregating an equally-large temporary collection - one that will
only have its first two elements inspected. By applying a lazy-iteration adapter to people, the collect iteration defers
to that of anySatisfy: only the elements anySatisfy requires are "collected."

GSC
MutableList<Person> people = FastList.newListWith(person1, person2, person3);
LazyIterable<Person> lazyPeople = people.asLazy();
LazyIterable<Address> addresses = lazyPeople.collect(addressFunction);
Assert.assertTrue(addresses.anySatisfy(Predicates.equal(address2)));

 GS Collections | Iteration patterns

18

In this example, the values in a Multimap are flattened and sorted, the results processed and sent to a stream by
forEach.

GSC
myMultimap.multiValuesView() // returns a lazy iterable by default
 .select(ITERABLE_SIZE_AT_THRESHOLD) // invoked but deferred…
 .asSortedList(DESCENDING_ITERABLE_SIZE) // as "select" evaluates,
 // sort elements in a non-lazy
 // sorted list.
 .asLazy() // restores the lazy adapter
 .collect(ITERABLE_TO_FORMATTED_STRING) // invoked but deferred…
 .forEach(Procedures.println(System.out));// as "collect" evaluates,
 // send results to stream.

Because a lazy iterable adapter is used, the collect evaluation occurs only as the forEach evaluation calls for it; there
is no intervening collection. Without the lazy adapter, collect() would execute in full, then return a collection to
forEach.

Finally, note these GS Collections methods that implicitly return a lazy-iterable type.

MutableMap interface and its implementations

valuesView() An unmodifiable view of the map's values.

keysView() An unmodifiable view of the map's keyset.

entriesView() An unmodifiable view of the map's entryset.

Multimap interface and its implementations

keyMultiValuePairsView() An unmodifiable view of key and multi-value pairs.

keysView() An unmodifiable view of unique keys.

keyValuePairsView() An unmodifiable view of key/value pairs.

multiValuesView() An unmodifiable view of each key's values, without the key.

RichIterable methods
These methods are available on all implementations of RichIterable.

Building strings
Methods that convert collection elements to a string that can be

appended to a stream or buffer.

The makeString method returns a representation of the calling RichIterable collection as a String object. Elements
are converted to strings as they would be by String.valueOf(Object). You can specify start and end strings as
delimiters (the default is an empty string for both) and the separator string for the between-values delimiter (defaults
to comma and space).

makeString(startString, separatorString,
endString)

Returns a string representation of the calling collection that
is a list of elements in the order they are returned by the
iterator, enclosed in the startString and endString. Elements
are delimited by the separatorString.

makeString(separatorString) Same result with no starting and ending strings.

GS Collections | Iteration patterns

19

makeString() Same result with the default delimiter ", " (comma space) and
no starting and ending strings.

GSC
MutableList<Integer> list = FastList.newListWith(1, 2, 3);
String myDelim = list.makeString("[", "/", "]"); // "[1/2/3]"
String mySeper = list.makeString("/"); // "1/2/3"
String
default=list.makeString(); //"1, 2, 3"

The appendString method uses forms similar to makeString, but the string representation of the collection is written
to a Java Appendable object, such as a PrintStream, StringBuilder or StringBuffer; the method itself is void.

appendString(Appendable, startString, separatorString,
endString)

Appends a string representation of this collection
onto the given Appendable using the specified
start, end, and separator strings

appendString(Appendable, separatorString) Appends with specified separator, but no starting
or ending strings.

appendString(Appendable) Appends with the default delimiter ", " (comma
space) and no starting and ending strings.

GSC
MutableList<Integer> list = FastList.newListWith(1, 2, 3);
Appendable myStringBuider = new StringBuilder();
list.appendString(myStringBuider, "[", "/", "]"); //"[1/2/3]");

Counting elements
Get the total number of elements that satisfy a condition.

The count and countWith methods calculate the number of collection elements that satisfy a given predicate. The
countWith method takes a second parameter that is used as an additional argument in evaluating the current element.

count(Predicate)

For each element of the collection, Predicate is evaluated with the current element as its argument. The count is
incremented if the Predicate evaluates as true. For example:

GSC
return people.count(new Predicate<Person>() {
public boolean value(Person person) {
 return person.getAddress().getState().getName().equals("New York");
}
});

countWith(Predicate2, parameter)

For each element of the collection, Predicate2 is evaluated with the element as the first argument and the specified
parameter as the second argument. The count is incremented if the discriminator evaluates as true.

GSC
return lastNames.countWith(Predicate2.equal(), "Smith");

Use these methods to get the total number of collection items or to determine whether the collection is empty.

size() Returns the number of items in the collection.

 GS Collections | Iteration patterns

20

isEmpty() Returns true if this iterable has zero items.

notEmpty() Returns true if this iterable has greater than zero items.

Finding elements
Locate elements by iteration position or highest/lowest value.

The getFirst and getLast methods return the first and last elements, respectively of a RichIterable collection. In the
case of a List, these are the elements at the first and last index. For all any other collections, getFirst and getLast
return the first and last elements that would be returned by an iterator. Note that the first or last element of a hash-
based Set could be any element, because element order in a hashed structure is not defined. Both methods return null
if the collection is empty. If null is a valid element, use the isEmpty method to determine if the container is in fact
empty.

getFirst() Returns the first element of an iterable collection.

getLast() Returns the last element of an iterable collection.

The min() and max() methods, without parameters, return an element from an iterable based on its natural order, that
is, by calling the compareTo() method on each element.

max() Returns the maximum value out of a collection of Comparable objects (e.g., List<Integer>).

min() Returns the minimum value out of a collection of Comparable objects (e.g. List<Integer>).

GSC
RichIterable<Integer> iterable = FastList.newListWith(5, 4, 8, 9, 1);
Assert.assertEquals(Integer.valueOf(9), iterable.max());
Assert.assertEquals(Integer.valueOf(1), iterable.min());

If any element in the iterable is not comparable, then a ClassCastException is thrown.

GSC
RichIterable<Object> iterable = FastList.newListWith(5, 4, 8, 9, 1, new Foo());
iterable.max(); // throws ClassCastException

The min() and max() methods each have an overload that takes a Comparator that determines the natural order.

max(Comparator) Returns the maximum element out of this collection based on the comparator.

min(Comparator) Returns the minimum element out of this collection based on the comparator.

GSC
public class SillyWalk
{
 public final int wiggles;

 public SillyWalk(int wiggles)
 {
 this.wiggles = wiggles;
 }
}

private static final Comparator<SillyWalk> SILLY_WALK_COMPARATOR =
 new Comparator<SillyWalk>()
 {
 public int compare(SillyWalk o1, SillyWalk o2)
 {
 return o1.wiggles - o2.wiggles;
 }
 };

GS Collections | Iteration patterns

21

SillyWalk sillyWalk2 = new SillyWalk(2);
SillyWalk sillyWalk3 = new SillyWalk(3);

RichIterable<SillyWalk> walks = FastList.newListWith(sillyWalk2, sillyWalk3);

Assert.assertEquals(sillyWalk3, walks.max(SILLY_WALK_COMPARATOR));
Assert.assertEquals(sillyWalk2, walks.min(SILLY_WALK_COMPARATOR));

The related methods minBy() and maxBy() take a Function and return the minimum or maximum element in the
RichIterable based on the natural order of the attribute returned by the selector.

maxBy(Function) Returns the maximum element out of this collection based on the result of
applying the Function to each element.

minBy(Function) Returns the minimum element out of this collection based on the result of
applying the Function to each element.

Here, we find the youngest person (the minimum person by age).

GSC
Person alice = new Person("Alice", 40);
Person bob = new Person("Bob", 30);
Person charlie = new Person("Charlie", 50);

MutableList<Person> people = FastList.newListWith(alice, bob, charlie);

Assert.assertEquals(bob, people.minBy(Person.TO_AGE));

In the code example we already had an Function, so calling minBy() was more concise than calling min(). These two
forms are equivalent though.

GSC
people.minBy(Person.TO_AGE);
people.min(Comparators.byFunction(Person.TO_AGE));

Using chunk and zip to create collections
Grouping and pairing elements of one or more collections.

The chunk method can be used to gather the elements of a collection into chunks; that is, it creates a collection made
up of collections of a specified fixed size (an integer). If the size doesn't divide evenly into the total of collection
elements, then the final chunk is smaller.

chunk(size)

Returns a new collection with the source collection's elements grouped in "chunks," with size elements in each
chunk, and the last chunk containing the remaining elements, if any.

GSC
MutableList<Integer> list =
 FastList.newListWith(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
RichIterable<RichIterable<Integer>> chunks = list.chunk(4);

System.out.println(chunks);

This example prints out:

[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10]]

 GS Collections | Iteration patterns

22

The zip method pairs up the elements of one RichIterable with those of second. If one of the two collections has
more elements than the other, those remaining elements are dropped. The zipWithIndex method is a special case of
zip that pairs the elements in a collection with their index positions.

zip(RichIterable)

Returns a new RichIterable by combining, into pairs, corresponding elements from the calling RichIterable
collection and the RichIterable collection named in the parameter. If one of the two collections is longer, its
remaining elements are ignored..

GSC
MutableList<String> list1 =
 FastList.newListWith("One", "Two", "Three", "Truncated");
MutableList<String> list2 = FastList.newListWith("Four", "Five", "Six");
MutableList<Pair<String, String>> pairs = list1.zip(list2);
System.out.println(pairs);

This example prints out:
 [One:Four, Two:Five, Three:Six]

zipWithIndex()

Returns a new RichIterable consisting of the calling collection's elements, each paired with its index (beginning
with index 0).

GSC
MutableList<String> list = FastList.newListWith("One", "Two", "Three");
MutableList<Pair<String, Integer>> pairs = list.zipWithIndex();
System.out.println(pairs);

This example prints out:
 [One:0, Two:1, Three:2]

Performance optimized methods: reusing two-argument code blocks
Using selectWith, rejectWith, and collectWith inside other iteration

patterns (or loops) where code blocks can be created outside of the outer
iteration patterns or made static.

The iteration patterns collect, select, and reject each take a single parameter, a code block that itself takes a
single argument. These patterns have alternate forms, methods named collectWith, selectWith, and rejectWith
respectively, which take two parameters:

• The first method parameter is a code block that itself takes two arguments; the first argument of the code block is
the current element with each iteration.

• The second method parameter is an object that is then passed to the code block as its second argument.

selectWith(Predicate2, argument)

rejectWith(Predicate2, argument)

For each element of the collection, Predicate2 is evaluated with the element as one argument, plus one additional
argument; selected or rejected elements are returned in a new collection of the same type.

collectWith(Predicate2, argument)

Same as the collect method, but two arguments are passed to the code block; returns a new collection of the same
type and size.

GS Collections | Iteration patterns

23

These "- With" forms accomplish exactly the same actions as their basic counterparts. Although slightly more
verbose, they allow for a specific performance optimization, that is re-use of the code block with different arguments.
Here is an example of select that finds the adults in a list of people. First, the JDK version, and then rewritten in GS
Collections form:

JDK
List<Person> people =...;
List<Person> adults = new ArrayList<Person>();
for (Person person : people)
{
 if (person.getAge() >= 18)
 {
 adults.add(person);
 }
}

GSC
MutableList<Person> people =...;
MutableList<Person> adults = people.select(
 new Predicate<Person>()
 {
 public boolean accept(Person each)
 {
 return each.getAge() >= 18;
 }
 });

Here's the same algorithm, again in GS Collections, this time using selectWith():

GSC
MutableList<Person> people =...;
MutableList<Person> adults = people.selectWith(
 new Predicate2<Person, Integer>()
 {
 @Override
 public boolean accept(Person eachPerson, Integer age)
 {
 return eachPerson.getAge() > age;
 }
 }, 18);

In this single instance, there is no reason to write it out this longer way; the extra generality - making age the second
argument to the Predicate2 - is unnecessary.

It does make sense, however, if you wanted to filter on multiple ages: you could hold onto and re-use the Predicate2,
thereby creating less garbage.

GSC
MutableList<Person> people =...;
Predicate2<Person, Integer> agePredicate =
 new Predicate2<Person, Integer>()
 {
 @Override
 public boolean accept(Person eachPerson, Integer age)
 {
 return eachPerson.getAge() > age;
 }
 };
MutableList<Person> drivers = people.selectWith(agePredicate, 17);
MutableList<Person> voters = people.selectWith(agePredicate, 18);
MutableList<Person> drinkers = people.selectWith(agePredicate, 21);

 GS Collections | Iteration patterns

24

Map iteration methods
Containers derived from the Map interfaces (MapIterable, MutableMap, ImmutableMap) and the Multimap
interfaces (MutableListMultimap, et al.) differ from those implementing MutableList, MutableSet, and MutableBag,
all of whose iteration patterns are specified by RichIterable. Maps, are a special case, comprising two separate,
though joined groups of elements: a set of keys and their associated values.

To enable iteration over the special structure of Maps and Multimaps, GS Collections provides a set of map-specific
methods whose operations and returned objects are specific to the keys, values, and entries (combined key-value
elements) that make up a Map.

Creating iterable views of maps
Wrapper classes that return an iterable view of a map; ForEach patterns

for Map containers.

These three methods each return an unmodifiable RichIterable view of a Map. They are essentially wrappers over the
modifiable, non-lazy objects returned by the corresponding Java Collections Framework methods.

valuesView() (Maps and Multimaps) Returns an unmodifiable RichIterable wrapper over the
values of the Map.

keysView() (Maps and Multimaps) Returns an unmodifiable RichIterable wrapper over the
keySet of the Map.

entriesView() (Maps only) Returns an unmodifiable RichIterable wrapper over the entrySet of
the Map.

ForEach Iteration

These three methods call a code block for each element on a Map (all return void).

forEachKey(Procedure) Calls the Procedure on each key of the Map.

forEachValue(Procedure) Calls the Procedure on each value of the Map.

forEachKeyValue(Procedure2) Calls the Procedure on each key-value pair of the Map.

Collecting entries
Gather entries from another collection into a Map

Use the collectKeysAndValues method to add all the entries derived from another collection into the current Map.

collectKeysAndValues(collection, keySelector, valueSelector)

(Maps only) The key and value for each entry is determined by applying the keySelector and valueSelector (in each
case, a Function) to each item in collection. Each is converted into a key-value entry and inserted into the Map. If a
new entry has the same key as an existing entry in the calling map, the new entry's value replaces that of the existing
entry.

GS Collections | Iteration patterns

25

Finding, testing and putting values
Detect a value by its key and, optionally, insert or return other values.

The getIfAbsent… and ifPresentApply methods locate a specified key and return a map value that corresponds to
that key. Depending on whether a value is found at the given key, each method performs a specific action.

getIfAbsent(key, Function0)

Returns the value in the Map that corresponds to the specified key; if there is no value at the key, returns the result
of evaluating the specified Function0 (here, specifically, a code block without parameters that returns some object).

getIfAbsentPut(key, Function0)

Returns the value in the Map that corresponds to the specified key; if there is no value at the key, returns the result
of evaluating the specified Function0, and puts that value in the map at the specified key

getIfAbsentPutWith(key, Function, parameter)

Returns the value in the Map that corresponds to the specified key; if there is no value at the key, returns the result
of evaluating the specified one-argument Function using the specified parameter, and put that value in the map at
the specified key.

getIfAbsentWith(key, Function, parameter)

Returns the value in the Map that corresponds to the specified key; if there is no value at the key, returns the result
of evaluating the specified Function and parameter.

ifPresentApply(key, Function)

If there is a value in the Map that corresponds to the specified key, returns the result of evaluating the specified
Function with the value, otherwise returns null.

 GS Collections | Iteration patterns

26

27

Chapter

2
Collections and containers

Topics:

• Basic collection types
• Creating and converting

collections
• Protecting collections

What is perhaps most distinctive about the GS Collections collection classes
is what (quite properly) is hidden: their implementation of iteration patterns.
Through this encapsulation, GS Collections is able to provide optimized
versions of each method on each container. For example, the first of the
classes we'll discuss here, FastList is array-based; it iterates using indexed
access directly against its internal array.

We'll begin with the GS Collections implementations of types having analogs
in the Java Collections Framework (JCF). We'll then discuss the new types
Bag and Multimap, the Immutable collections, and protective wrappers.

 GS Collections | Collections and containers

28

Basic collection types
The most commonly-used GS Collections classes are FastList, UnifiedSet, and UnifiedMap. These collections serve
as drop-in replacements for their corresponding types in the Java Collections Framework (JCF). Note that these GS
Collections classes do not extend the JCF implementations; they are instead new implementations of both JCF and GS
Collections interfaces, as this (highly-simplified) diagram summarizes:

The methods of the JCF types are primarily focused on adding or removing elements and similar, non-iterative
operations. GS Collections interfaces provide methods for iteration patterns that for the most part, do not modify
(mutate) the source collection, but rather return a new collection or information about the source collection.

MutableList
An ordered collection that allows duplicate elements.

The MutableList interface (extending ListIterable) describes a collection of elements that have a specific order, with
duplicate values permitted.

MutableList extends the JCF List interface and has the same contract. It also extends RichIterable which provides
the iteration methods described in the previous topic,

The most common implementation of MutableList is FastList, which can be used to replace the familiar
java.util.ArrayList.Here is a comparison of how the two types can be created.

Class Example

ArrayList (JCF) List<String> comparison = new
ArrayList<String>();
comparison.add("Comcast");
comparison.add("IBM);
comparison.add("Microsoft");
comparison.add("Microsoft");
return comparison;

FastList (GSC) return FastList.newListWith("Comcast","IBM", "Microsoft", "Microsoft");

The MutableList interface includes the sortThis and reverse methods, which are similar to the static methods with
the same names on java.util.Collections.Both are mutating methods. Here is an example of using sort using the JDK
API and then GS Collections

Class Example

ArrayList (JCF) Collections.sort(people, new Comparator<Person>()
{
 public int compare(Person o1, Person o2)
 {
 int lastName = o1.getLastName().compareTo(o2.getLastName());
 if (lastName != 0)
 {
 return lastName;
 }
 return o1.getFirstName().compareTo(o2.getFirstName());
 }

GS Collections | Collections and containers

29

Class Example

});

FastList (GSC) people.sortThis(new Comparator<Person>()
{
 public int compare(Person o1, Person o2)
 {
 int lastName = o1.getLastName().compareTo(o2.getLastName());
 if (lastName != 0)
 {
 return lastName;
 }
 return o1.getFirstName().compareTo(o2.getFirstName());
 }
});

MutableList adds a new method called sortThisBy, which gets some attribute from each element using a Function
and then sorts the list by the natural order of that attribute.

Class Example

ArrayList (JCF) Collections.sort(people, Functions.toComparator(Person.TO_AGE));

FastList (GSC) people.sortThisBy(Person.TO_AGE);

Here is an example comparing reverse() using the JCF and using GS Collections; both are mutating methods.

Class Example

ArrayList (JCF) Collections.reverse(people);

FastList (GSC) people.reverse();

The toReversed method on MutableList lets you reverse a list without mutating it. Here is an example of how to
accomplish that in the JCF and in GS Collections.

Class Example

ArrayList (JCF) List<Person> reversed = new ArrayList<Person>(people)
Collections.reverse(reversed);

FastList (GSC) MutableList<Person> reversed = people.toReversed();

MutableSet
An unordered collection that allows no duplicate elements.

The MutableSet interface (extending SetIterable) defines an unordered collection that does not permit duplicate
elements. An attempt to add duplicate elements to a MutableSet container is ignored without throwing an exception.
The order in which the elements are processed during iteration is not specified.

MutableSet extends SetIterable and has the same contract. The most common implementation is UnifiedSet, which is
the GS Collections counterpart of HashSet in the Java Collections Framework. As with MutableList, the MutableSet
interface extends the RichIterable interface.

Class Example

HashSet (JDK)
Set<String> comparison = new HashSet<String>();
comparison.add("IBM");
comparison.add("Microsoft");
comparison.add("Oracle");

 GS Collections | Collections and containers

30

Class Example

comparison.add("Comcast");
return comparison;

UnifiedSet (GSC)
return UnifiedSet.newSetWith("IBM", "Microsoft", "Verizon", "Comcast");

MutableMap
A collection of key/value pairs

The MutableMap interface defines an association of key/value pairs. It extends the MapIterable interface, which
furnishes a set of iteration methods especially for the key/value structure of a Map collection. These include
unmodifiable views of keys, values or pair-entries using the keysView, valuesView and entriesView methods,
respectively.

The mutable subinterfaces of MapIterable also extend the JCF Map interface.

The most common implementation of MutableMap is UnifiedMap, which can replace the Java class HashMap.

Class Example

HashMap (JDK)
Map<Integer, String> map = new HashMap<Integer, String>();
map.put(1, "1");
map.put(2, "2");
map.put(3, "3");

UnifiedMap
(GSC) MutableMap<Integer, String> map = UnifiedMap.newWithKeysValues(1, "1", 2, "2",

 3, "3");

MutableBag
An unordered collection that allows duplicates.

A MutableBag (extending Bag) combines the less-restrictive aspects of a Set - in that it is an unordered collection
- and a List, which permits adding duplicate values. It is implemented using a specialized kind of map, called a
multiset, which pairs each distinct value as a key with the count of its occurrences in the collection as a value.

AppleFor example, this list:

Pear

Orange

Orange

Apple

Orange

could create this bag: Pear 1

Orange 3

Apple 2

GSC
return MutableBag < String > bag =
 HashBag.newBagWith("Apple", "Pear", "Orange", "Apple", "Apple", "Orange");

GS Collections | Collections and containers

31

The MutableBag interface includes methods for getting and manipulating the number of occurrences of an item. For
example, to determine the number of unique elements in a MutableBag, use the sizeDistinct() method.

Multimap
A map-like container that can have multiple values for each key

In a Multimap container, each key can be associated with multiple values. It is, in this sense, similar to a Map, but
one whose values consist of individual collections of a specified type, called the backing collection. A Multimap is
useful in situations where you would otherwise use Map<K, Collection<V>>.

Unlike the other basic GS Collections containers, Multimap does not extend RichIterable, but resides along with its
subinterfaces in a separate API. The RichIterable methods are extended by the backing collection types.

Depending on the implementation, the "values" in a Multimap can be stored in Lists, Sets or Bags. For example, the
FastListMultimap class is backed by a UnifiedMap that associates each key with a FastList that preserves the order
in which the values are added and allows duplicate to be added.

A Multimap is the type returned by the groupBy method. Here is an example in which we group a list of words by
their length, obtaining a Multimap with integer (word=length) keys and lists of words having that length for values.

This simple list: here produces a List-backed Multimap: key value<list>

are 1 a

a 3 are,few,are,not,too

few 4 here,that,long

words 5 words

that

are

not

too

long

The code that performs this action uses the groupBy method.

GSC
MutableList<String> words = FastList.newListWith("here", "are", "a", "few",

 "words", "that", "are", "not", "too", "long");
MutableListMultimap<Integer, String> multimap =
 words.groupBy(StringFunctions.length());

The interface MutableListMultimap extends the Multimap interface and tells us the type of its backing collections.
Since this example uses Lists, the word "are" is allowed to occur twice in the list at key 3.

If we use groupBy on the same source list to generate a Multimap of Sets, the resulting backing collections will
eliminate duplicate entries and disregard the order of elements in the source List:

GSC
MutableSetMultimap<Integer, String> multimap =
 words.groupBy(StringFunctions.length());

With duplicates removed, only four 3-letter words
remain.

key value <list>

1 a

 GS Collections | Collections and containers

32

3 too,are,few,not,

4 long,here,that

5 words

Creating and converting collections
The following methods can be used to convert one container type to another. All of these methods are on
RichIterable. To create immutable and fixed-size collections, refer to Immutable collections.

toList() Converts the collection to the default MutableList implementation (FastList).

toSet() Converts the collection to the default MutableSet implementation (UnifiedSet).

toBag() Converts the collection to the default MutableBag implementation (HashBag).

toMap(keySelector,
valueSelector)

Converts the collection to the default MutableMap implementation
(UnifiedMap) using the specified keySelectors and valueSelectors.

toSortedList() Converts the collection to the default MutableList implementation (FastList)
and sorts it using the natural order of the elements.

toSortedList(Comparator) Converts the collection to the default MutableList implementation (FastList)
and sorts it using the specified Comparator.

These methods always return new mutable copies: for example, calling toList() on a FastList, returns a new
FastList.

To create a new collection of the same type

newEmpty() Creates a new, empty, and mutable container of the same collection type. For
example, if this instance is a FastList, this method will return a new empty
FastList. If the class of this instance is immutable (see below) or fixed size (for
example, a singleton List) then a mutable alternative to the class is returned.

Protecting collections
GS Collections provides special interfaces for controlling and preventing changes to containers and their elements.

• Immutable collection: a copy that is permanently unchangeable.
• Unmodifiable collection: a read-only interface wrapped over a backing collection that remains mutable.
• Synchronized collection: a wrapper that presents a mostly thread-safe view of a collection.

Immutable collections
A read-only snapshot of a collection; once created, it can never be

modified.

All of the basic containers in GS Collections have interfaces for both mutable and immutable (unchangeable) forms.
This departs somewhat from the JCF model, in which most containers are mutable.

An immutable collection is just that - once created, it can never be modified, retaining the same internal references
and data throughout its lifespan. An immutable collection is equal to a corresponding mutable collection with the
same contents; a MutableList and an ImmutableList can be equal.

GS Collections | Collections and containers

33

Because its state does not change over time, an immutable collection is always thread-safe. Using immutable
collections where feasible can serve to make your code easier to read and understand.

All of the interfaces and implementations discussed so far in this topic have been mutable versions of their respective
types. Each of these containers has an immutable counterpart: These are the corresponding interfaces:

Mutable types Immutable types

MutableList ImmutableList

MutableSet ImmutableSet

MutableBag ImmutableBag

MutableMap ImmutableMap

MutableMultimap ImmutableMultimap

The method that returns an immutable collection for all container types is:

MutableCollection.toImmutable() Returns an immutable copy of a type corresponding to the
source MutableCollection.

An immutable-collection interface lacks mutating methods, such as add() and remove(). Instead, immutable
collections have methods that return new, immutable copies with or without specified elements:

ImmutableCollection.newWith(element) Returns a new immutable copy of ImmutableCollection with
element added.

ImmutableCollection.newWithAll(Iterable) Returns a new immutable copy of ImmutableCollection with
the elements of Iterable added.

ImmutableCollection.newWithout(element) Returns a new immutable copy of ImmutableCollection with
element removed.

ImmutableCollection.newWithoutAll(Iterable) Returns a new immutable copy of ImmutableCollection with
the elements of Iterable removed.

Note that the iteration methods of an immutable container - such as select, reject, and collect - also produce new,
immutable collections.

Immutable Collection Factory Classes

The factory classes Lists, Sets, Bags, and Maps create immutable collections. These factories also provide methods
for creating fixed-size collections, which have been superseded by immutable collections.

ImmutableList<Integer> immutableList = Lists.immutable.of(1, 2, 3);
ImmutableSet<Integer> immutableSet = Sets.immutable.of(1, 2, 3);
Bag<Integer> immutableBag = Bags.immutable.of(1, 2, 2, 3);
ImmutableMap<Integer, String> immutableMap =
 Maps.immutable.of(1, "one", 2, "two", 3, "three");

These factories highlight yet another benefit of immutable collections: they let you create efficient containers that are
sized according to their contents. In cases where there are many, even millions of collections, each with a size less
than 10, this is an important advantage.

 GS Collections | Collections and containers

34

Protective wrappers
Wrapper classes providing read-only or thread-safe views of a

collection.

Unmodifiable Collections

In both the JCF and GS Collections, a collection may be rendered unmodifiable. In GS Collections, this is done by
means of the asUnmodifiable method, which returns a read-only view of the calling collection. This means that the
mutating methods of the collection (e.g., add, remove) are still present, but throw exceptions if called.

MutableCollection.asUnmodifiable() Returns a read-only view of the source collection.

Synchronized Collections
GS Collections provides a wrapper for rendering a modifiable but thread-safe view that holds a lock when a method is
called and releases the lock upon completion.

MutableCollection.asSynchronized() Returns a synchronized copy of the source collection.

35

Chapter

3
Code blocks

Topics:

• Common code block types

A code block, in GS Collections terms, is a single-abstract-method object
that is passed as a parameter to an iteration method. It is an abstraction that
represents the evaluation of each element in the course of iteration. It helps
us to further separate what is being done from how it's done. This topic
enumerates the basic code block types - the GS Collections interfaces and
classes - and the relevant methods to which they apply.

What we call a "code block" in GS Collections is roughly analogous to what
is more formally and precisely termed a closure or first-class function. A
closure is a function that, when passed to a method, can access and modify
variables in its enclosing scope. This is a facility that the Java language does
not (as of this writing) support. The closest analog to a closure in Java is the
anonymous inner class (which allows read access to local final variables),
and this is one technique among several for implementing code blocks in GS
Collections.

In this inline example, the highlighted text is a nameless code block, used
as predicate (a yes/no function used as a filter) that implements a Predicate
interface. This code block is passed as the parameter of a select method call.
A Predicate has one method of its own, accept(), which takes as its sole
argument each, the current element upon each iteration of the enclosing
select method.

GSC
MutableList<Person> texans = this.people.select(new
 Predicate<Person>() {
 public boolean accept(Person each) {
 return each.getAddress().getState().equals("TX");
 }
});
Verify.assertSize(1, texans);

In this case, if the value of state field for any element in people equals "TX"
then the select method adds that element to the new list, texans.

About parameter and argument:

These terms are often (if inaccurately) used interchangeably to refer to
method or function inputs. (The usual distinction holds that parameter refers
to a formal definition of the input, while argument denotes the actual values.)
For the limited purposes of this guide - and in particular the scope of this
topic - we use parameter to specify the input to an iteration method - in this
example, select. These parameters can take the form of the code block (as
described in this topic), which itself is an object with methods. The input for a
code block we refer to here as the argument - in this example, the argument is
each (the "current element" upon each iteration).

 GS Collections | Code blocks

36

Common code block types
Here is a summary of the most commonly-used code blocks and the GS Collections methods that use them.

Arguments Returns Used By

Predicate Evaluates each element
of a collection (the argument), and
returns a boolean value.

One (T) boolean select, reject, detect,
anySatisfy, allSatisfy, count

Predicate2 Two (T,P) boolean selectWith,rejectWith,
detectWith,
anySatisfyWith,allSatisfyWith,
countWith

Function (transformer): Evaluates
each element of a collection as the
argument to the code block logic
and returns a computed value

One (T) Object (V) collect,flatCollect, groupBy

Function2 Two (T,P) Object (V) forEachEntry() injectInto()
collectWith()

Function3 Three (T,P,?) Object (V) injectIntoWith

Procedure : Executes on each
element of a collection, returns
nothing.

One (T) void forEach, forEachKey,
forEachValue,

Procedure2 Two (T,P) void forEachWith,
forEachKeyValue

Function0 : Executes and returns
a value (like Callable); represents
deferred evaluation.

Zero Object (V) getIfAbsent, getIfAbsentPut,
ifPresentApply

Comparator: "Imposes a total
ordering on some collection of
objects." (JDK)

Two (T,T) int (negative, 0, positive) sortThis, max, min

Predicate
A Predicate is a single-argument code block that evaluates an element and returns a boolean value. Also known as a
discriminator or filter, it is used with the filtering methods select, reject, detect, anySatisfy, allSatisfy, and count.

The accept method is implemented to indicate the object passed to the method meets the criteria of this Predicate.

Predicate Factories

Predicates Supports equal, greaterThan, lessThan, in, notIn, and, or,
instanceOf, null, notNull, anySatisfy, allSatisfy, etc.

Predicates2 For Predicate2s that work with methods suffixed with
"with."

StringPredicates Supports empty, notEmpty, contains, isAlpha,
isNumeric, isBlank, startsWith, endsWith, matches, etc.

GS Collections | Code blocks

37

Predicate Factories

IntegerPredicates Supports isEven, isOdd, isPositive, isNegative, isZero .

LongPredicates Supports isEven, isOdd, isPositive, isNegative, isZero.

Predicates factory

The Predicates class can be used to build common Predicates (predicates) to be used with filtering patterns.
Predicates supports equals, not equals, less than, greater than, less than or equal to, greater than or equal to, in, not in,
and, or, and numerous other predicate-type operations.

Some examples with select():

GSC
MutableList<Integer> myList =...
MutableList<Integer> selected1 = myList.select(Predicates.greaterThan(50));

Function
The Function code block in its most common usage takes each element of a collection as the argument to the code-
block logic. It selects an attribute from the element via a "getter" - its valueOf() method. It then returns a computed
value or, if no evaluation logic is performed, the attribute itself.

Function code blocks are used as a parameter in a variety of common GS Collections methods:

• With the collect method to calculate a new value for each element of a given collection, and then return a
transformed collection of the same type.

• With the groupBy method to generate keys for each nested collection (values) of a new Multimap.
• With the flatCollect method, where it must return an Iterable that gets "flattened" with other iterables, into a

single collection.
• With the Predicates factory's attributeOperator methods - such as attributeLessThanOrEqualTo - to build

Predicate (boolean) objects.

Function Factories

Functions (static class)
getToClass() getToString()

getPassThru()

Other functions

IfFunction Supports if and else using a discriminator with Function.

CaseFunction This allows for multi-conditional or rule based selector using Predicates (use this with
guidance).

 Procedure
A Procedure is a code block that performs an evaluation on its single argument and returns nothing. A Procedure is
most commonly used with ForEach -pattern methods.

Count and calculate

CountProcedure Apply a Predicate to an object and increment a count if it returns true.

 GS Collections | Code blocks

38

CounterProcedure Wrap a specified block and keeps track of the number of times it is executed.

SplitDoubleSumProcedure Create two double sums, one for items that return true for the specified
discriminator and one for items that return false. A DoubleSelector must be
provided.

SplitIntegerSumProcedure Create two integer sums, one for items that return true for the specified
discriminator and one for items that return false. An IntegerSelector must be
provided.

SumProcedure Summarize the elements of a collection either via a forEach() or injectInto()
call. SumProcedure returns optimized primitive blocks for specialized
primitive subclasses of Function which result in less garbage created for
summing primitive attributes of collections.

Return a value

ResultProcedure Store a result to be accessed after an iteration is complete; this is useful for
determining a return value from a forEach() invocation, which itself has no
return value.

Control execution

ChainedProcedure Chain together blocks of code to be executed in sequence;
ChainedProcedure can chain Procedures, Functions or Function2s.

CaseProcedure Create an object form of a case statement, which instead of being based on a
single switch value is based on a list of discriminator or block combinations.
For the first discriminator that returns true for a given value in the case
statement, the corresponding block will be executed.

IfProcedure Evaluate the specified block only when either discriminator returns true. If
the result of evaluating the Predicate is false, and the developer has specified
that there is an elseProcedure, then the elseProcedure is evaluated.

IfProcedureWithInt Apply an index that effectively filters which objects should be used.

Modify collections and maps

CollectionAddProcedure Add elements to the specified collection when block methods are
called.

CollectionRemoveProcedure Remove element from the specified collection when block methods
are called.

ConcurrentMapOfListsPutProcedure Use a specified Function to calculate a key for an object passed
to the value method. The object is put into a MultiReaderFastList
contained in the specified Map at the position of the calculated key.

MapPutProcedure Use a specified Function to calculate the key for an object and puts
the object into the specified Map at the position of the calculated
key.

MultimapPutProcedure Use a specified Function to calculate the key for an object and puts
the object with the key into the specified MutableMultimap.

StringBufferProcedure Transform to string and append elements of a collection to a
StringBuffer, separated by the specified separator after trans.

StringBuilderProcedure Transform to string and append elements of a collection to a
StringBuider, separated by the specified separator.

GS Collections | Code blocks

39

Output a collection to a system

PrintlnProcedure Outputs an object to a PrintSteam using println.

 GS Collections | Code blocks

40

41

Chapter

4
Utility GS Collections

Topics:

• Utility iteration patterns
• Parallel iteration

GS Collections includes an assortment of static utility classes, such as Iterate
and ListIterate, that provide interoperability of GS Collections iteration
methods with standard Java collection classes.

Class Used with

Iterate Iterables (inclusive Collections)

ListIterate List

MapIterate Maps

ArrayIterate Arrays

StringIterate Strings

ParallellIterate Parallel processing

 GS Collections | Utility GS Collections

42

Utility iteration patterns
Pattern Implementation

For
Each

JDK
for (int i = 0; i < list.size(); i++)
{
 this.doSomething(list.get(i));
}

Utility GSC
 Iterate.forEach(collection, new Procedure() {
 public void value(Object each) {
 doSomething(each);
 }
});

Collect JDK
List<Address> addresses = new ArrayList<Address>();

for (Person person : people)
{
 addresses.add(person.getAddress());
}

Utility GSC
Iterate.collect(collection, Function.TO_STRING_SELECTOR);

Select JDK
List<Integer> greaterThanFifty = new ArrayList<Integer>();
for (Integer each : list)
{
 if (each.intValue() > 50)
 {
 greaterThanFifty.add(each);
 }
}

Utility GSC
Iterate.select(collection, Predicates.greaterThan(new Integer(50)));

Reject JDK
List<Integer> notGreaterThanFifty = new ArrayList<Integer>();
for (Integer each : list)
{
 if (each <= 50)
 {
 notGreaterThanFifty.add(each);
 }
}

Utility GSC
Iterate.reject(collection, Predicates.greaterThan(new Integer(50)));

Inject
Into

JDK
List<Integer> list = Lists.mutable.of(1, 2);
int result = 5;
for (int i = 0; i < list.size(); i++)
{
 Integer v = list.get(i);
 result = result + v.intValue();
}

Utility GSC
Iterate.injectInto(3, Lists.mutable.of(1, 2), AddFunction.INTEGER);

Detect JDK
for (int i = 0; i < list.size(); i++)

GS Collections | Utility GS Collections

43

Pattern Implementation

{
 Integer v = list.get(i);
 if (v.intValue() > 50)
 {
 return v;
 }
 return null;
}

Utility GSC
Iterate.detect(collection, Predicates.greaterThan(new Integer(50)));

Any
Satisfy

JDK
for (int i = 0; i < list.size(); i++)
{
 Integer v = list.get(i);
 if (v.intValue() > 50)
 {
 return true;
 }
}
return false;

Utility GSC
Iterate.anySatisfy(collection, Predicates.greaterThan(new Integer(50)));

All
Satisfy

JDK
for (int i = 0; i < list.size(); i++)
{
 Integer v = list.get(i);
 if (v.intValue() <= 50)
 {
 return false;
 }
}
return true;

Utility GSC
Iterate.allSatisfy(collection, Predicates.greaterThan(new Integer(50)));

Parallel iteration
GS Collections also provides parallel iteration that allows for optimization of data-intensive algorithms. Parallel
implementations of several of the serial iteration patterns are provided out of the box. Note, however that parallel
algorithms are usually not the optimal solution for the problem you are facing.

Examples

Protocol Implementation

For Each pseudocode for each <element> of <collection>
 evaluate(<element>, <with>)

GSC
ParallelIterate.forEach(list, aProcedure);

Select pseudocode create <newcollection>
 for each <element> of <collection>
 if condition(<element>, <with>)
 add <element> to <newcollection>

GSC
ParallelIterate.select(list, Predicates.greaterThan(new Integer(50)));

Collect pseudocode create <newcollection>

 GS Collections | Utility GS Collections

44

Protocol Implementation

 for each <element> of <collection>
 <result> = transform(<element>, <with>)
 add <result> to <newcollection>

GSC
ParallelIterate.collect(list, aFunction);

Reject pseudocode create <newcollection>
 for each <element> of <collection>
 if not condition(<element>)
 add <element> to <newcollection>

GSC
ParallelIterate.reject(list, Predicates.greaterThan(new Integer(50)));

	Contents
	About GS Collections
	Iteration patterns
	Common iteration patterns
	Select/Reject pattern
	Select and Reject methods
	Partition pattern

	Collect pattern
	Collect methods
	Flatten pattern
	GroupBy pattern

	Short-circuit patterns
	Detect pattern
	Detect methods

	AnySatisfy pattern
	AnySatisfy methods

	AllSatisfy pattern
	AllSatisfy methods

	ForEach pattern
	ForEach methods

	InjectInto pattern
	InjectInto methods

	RichIterable
	Lazy iteration
	RichIterable methods
	Building strings
	Counting elements
	Finding elements
	Using chunk and zip to create collections
	Performance optimized methods: reusing two-argument code blocks

	Map iteration methods
	Creating iterable views of maps
	Collecting entries
	Finding, testing and putting values

	Collections and containers
	Basic collection types
	MutableList
	MutableSet
	MutableMap
	MutableBag
	Multimap

	Creating and converting collections
	Protecting collections
	Immutable collections
	Protective wrappers

	Code blocks
	Common code block types
	Predicate
	Function
	Procedure

	Utility GS Collections
	Utility iteration patterns
	Parallel iteration

