oldman
achs

GS Collections

User Reference Guide

Copyright © 2011 Goldman Sachs. All Rights Reserved.
Version 1.2.0 (03/14/2012)

Contact: gs-collections@gs.com

GS Collections

GS Caollections| TOC

Contents

ADOUL GS COlIBCLIONS......eiieiiiieieee ettt s r et st be b e sneenes 5
Chapter 1: 1teration PatterNS........cccoeieeerieie e 7
COMIMON ITEIaLION PAITEINS......covieetiietireeiere ettt bbb bbbt b sttt sb et 8
SEECH/REECE PALEEIN......eeeteeeiereet ettt ettt a bbbt b e b e s eb e e b e b e ene e 8

COlECE PAILEIN....c.eceieeiteet ettt bbbt b et b e bbb bbbt b 10

SNOI-CIFCUIT PALEEINIS. ...ttt ettt b et se et sb et b e b e b e e b e 13

FOPECHN PAEEIN.... .ttt ettt b e sttt sb et b et b et ebe e ere e 15

[NJECHINTO PAILEIN. ...ttt b e et b e e b e bbbt sb e ebe e 16

o 0= = o =S 17

LBZY TEEIAEIION....c.eeeiieeieeteee ettt ettt bttt b et b e ekt b e e b e bt e bt et e rne 17

Richlterable MEthOGS..........cooi i sre e nrens 18

Map TtEration MELNOGS.......cciiieiereete bbbttt st sttt 24
Creating iterale VIEWS O MaS.......cociriiiriiirie e 24

COlECHING ENITES.....veeetiectere ettt bbbt b e bbb bbb e naenes 24

Finding, testing and PULtiNG VEIUES..........cceoiiiriiiieee e e 25

Chapter 2: Collections and CONtAINENS..........cceeceevieeeieeiieeree e 27
BaSiC COIECHION LYPES......cueeiiieiie ettt ste ettt sttt sa et et e e esa e s e e seeseereesesnesnenteseesrenean 28
IMUEBDIELISE. ...ttt 28

IMULBDIESEL. ...t een e 29

Y01 = o] = = o 30

YW1 r= o= 30

Y1007 31

Creating and converting COIECLIONS..........cuiiiirierierieee et se e e e e e seesennennens 32

[0 11= ot (] o o] =T 1o 32
IMMULEDIE COIIECIIONS.......ceceeiierie e 32

0 1= o A T o o= £ 34
Chapter 3: Code DIOCKS.........ccoiiiiieeeeee s 35
ComMON COAE DIOCK TYPES.....ueeeeeeiieiee ettt ettt h e bbbt b b e e e e se e e e e e ene 36
PrEOICALE. ...ttt bbb e b et b ettt e 36

FUNCEION. ...ttt bt n et r e 37

PIOCEUUNE. ...ttt ettt bt b e e b et nr et n et r et nne 37
Chapter 4: Utility GS COllECHIONS.......coeieiiieeieecie e 41
ULIHILY STEration PAILEINS.......coeetereeieriete ettt b e e et b et bt bbb bns 42

=1 1= o SN 43

GS Callections| TOC

About GS Collections

A collections framework for Java based on Smalltalk patterns.

GS Collectionsisalibrary of collection-management utilities that work with the Java Collections Framework (JCF).
GS Caollections offers JCF-compatibl e implementation alternatives for List, Set and Map. It also introduces a host of
new features including Multimaps and Bags, lazy evaluation, immutable containers, and parallel iteration utility.

GS Caollections leverages the idea of internal iteration - putting collection-handling methods on the collection classes,
a concept derived from the Smalltalk language. Internal iteration affords a more consistent and intuitive approach

to using collections by encapsulating the details of how various iteration patterns are implemented. Hiding this
complexity lets you write more readable code with less duplication.

The code block is evaluated on each
element of the collection, one at a time.
That is, with each iteration, the current

A piece of code that is passed as a parameter to the element is evaluated or transformed by

iteration method. The return type depends on the the code block, which may also use

iteration method used. It can be - additional arguments passed to it by the
- aboolean value, using a Predicate interface. calling iteration method.

- aselected or computed object, using a Function.
- nothing, using a Procedure.

A collection object or container. myCollection.iterate({code block});

Some containers are
implementations of standard Java
collection types; these include:

- FastList (List) An iteration method denoting

- UnifiedSet (Set) the action to perform on each

- UnifiedMap (Map) The real enhancement element of the collection and
Other collection types implement GS Collections provides is the type of object that is to be
new interfaces: internal iteration: the returned (if any). The most

- HashBag (Bag) collection objects themselves| commonly-used methods are:

- FastListMultimap (Multimap) | furnish the methods for - select()/reject()

iterative operations that - collect()

The body of the iterated code

would otherwise require - detect())

) . is passed as an anonymous
external looping structures, - allfanySatisfy() .)

. inner class. This lets us
such as for and while. - forEach()
injectinto() separate what we do to the
. collection as a whole (the
- count()

iteration method) from how
we make use of its individual
elements (the code block).

About this guide

This Guide is an introduction to basic GS Collections concepts and its commonly-used features. It provides a high-
level survey of the GS Collections library and its capabilities. The topics covered are:

« |teration patterns: the logic underlying GS Collections methods.

» Collections & containers: the JCF compatible collection types and new containers introduced in GS Collections.
« Codeblocks: afunction that can be passed around as data.

» Utilities: Factory classes, static methods, and other features of the library.

GS Callections | About GS Collections

Chapter

1

Iteration patterns

Topics:

« Common iteration patterns
* Richlterable
* Map iteration methods

GS Collections extends the Java Collections Framework with new interfaces
and classes and provides additional methods. These new methods implement
iteration patterns derived from the collection protocol of the Smalltalk
language (e.g., select, reject, collect, detect).

Inidiomatic Java, iteration is performed by external for and while loops
that enclose a block of business logic to be performed on each element of a
collection. Thisis an approach that often leads to much duplication of code
structure.

In GS Collections, business logic isreified as a code block: aclassthat is
passed as a parameter to an iteration method. Each implementation of an
iteration method iterates over the collection, passing each element to the code
block for processing.

The most important advantage of internal iteration patternsisthat they
increase readability by giving names to the structural iteration patterns and
by reducing code duplication. Moreover, by encapsulating implementation
within specialized collection types (e.g., list, sets, maps), iteration can be
optimized for the particul ar type.

GS Collections | Iteration patterns

The most commonly-used iteration patternsin GS Collections are:

* Filtering patterns:

e Select
* Regect
e Partition

e Transforming patterns:

e Collect
e Flatten
¢ GroupBy

e "Short-circuit" patterns:

¢ Detect
o AnySatisfy
o AllSatisfy

» Generic action patterns:

* ForEach
* Injectinto

Select/Reject pattern

Filter a collection to create a new collection: includes select, reject, and
partition.

Methods using the Select pattern return a new collection comprising those elements from the source collection that
satisfy some logical condition; Reject is the inverse pattern, returning a new collection of elements that do not satisfy
the condition. The condition is a boolean expression in the form of single-argument code block that implements the
Predicate interface.

Select pattern examples:

Pseudocode create <newcol | ecti on>
for each <el enent> of <collection>
if condition(<elenment>)
add <el ement > to <newcol | ecti on>

JDK

Li st<lnteger> greaterThanFifty = new Arrayli st <l nteger>();
for (Integer each : Ilist)

if (each.intValue() > 50)
{

}

great er ThanFi fty. add(each);

Select, using an anonymous inner class as a code block:

GSC
Mut abl eLi st <I nt eger > greater ThanFifty =

|'ist.select(new Predi cate<l| nteger>()

GS Collections | Iteration patterns

publ i c bool ean accept (| nt eger each)

{

}
1)

return each > 50

Here, a Predicate is created using the Predicates factory:
GSC

l'ist.select(Predicates.greaterThan(50));

Hereis an example of GS Collections using the proposed Lambda support that is being built in Java 8:

GSC
Li st<lnteger> greaterThanFifty =
|ist.select(each - > each > 50);

Reject pattern examples:

Pseudocode create <newcol | ection>
for each <el enent> of <coll ection>

if not condition(<el emrent>)
add <el ement> to <newcol | ecti on>

JDK
Li st<l nteger> not Greater ThanFifty = new Arrayli st <l nteger>();
for (Integer each : list)
if (each <= 50)
not & eat er ThanFi fty. add(each)
}
}
GSC

list.reject(Predicates.greaterThan(50));

Select and Reject methods
These GS Collections methods implement the Select and Reject pattern:

select(Predicate)
r ¢ ect(Predicate)

The Predicate is evaluated for each element of the collection. The selected elements are those where the Predicate
returned true (false for rejected). The selected (or rejected) elements are returned in a new collection of the same

type.

select(Predicate, targetCollection)

r g ect (Predicate, targetCollection)

Same as the sel ect()/r g ect () methods with one argument, but results are added to the specified targetCollection.

selectWith(Predicate2, argument)
rejectWith(Predicate2, argument)

For each element of the collection, Predicate? is evaluated with the element as one argument, plus one additional
argument; selected elements are returned in a new collection of the same type. See Reusing a code block for more
information.

selectWith(Predicate2, argument, targetCollection)

GS Collections | Iteration patterns

10

rejectWith(Predicate2, argument, targetCollection)
Same as the selectWith()/r gj ectWith() methods, but results are added to the specified targetCollection.

Partition pattern
Create two collections using Select and Reject.

The Partition pattern allocates each element of a collection into one of two new collections depending on whether the
element satisfies the condition expressed by the Predicate. In effect, it combines the Select and Reject patterns. The
collections are returned in a Partitionl terable specialized for the type of the source collection. Y ou can retrieve the
selected and rejected elements from the Partitionl terable. In this example, the list of peopleis partitioned into lists of
adults and children.

GSC

Mut abl eLi st <Per son> people =...
PartitionMit abl eLi st <Person> partitionedFol ks = people.partition(
new Predi cat e<Per son>()

{
publ i c bool ean accept (Person each)
{
return each. get Age() >= 18;
}
b))

Mut abl eLi st <Person> adults = partitionedFol ks. get Sel ect ed() ;
Mut abl eLi st <Person> children = partitionedFol ks. get Rej ect ed();

Partitioning Methods

partition(Predicate)

Filters the collection into two separate new collections (selected and rejected), based on Predicate. The collections
arereturned in aspecialized Partitionl terable of the same type as the source collection.

Collect pattern

Transform a collection's elements, creating a new collection: includes
collect, flatCollect, and groupBy.

The Collect pattern methods return a new collection whose data elements are the results of an evaluation performed
by the code block; that is, each element of the original collection is mapped to a new object, which isusually a
different type. The code block used as the collect method's parameter implements the Function interface.

Pseudocode create <newcol | ection>
for each <el enent> of <coll ection>

<resul t> = transforn(<el ement>)
add <result> to <newcol | ecti on>

JDK
Li st <Addr ess> addresses = new ArraylLi st <Address>();
for (Person person : people)
{
addr esses. add(person. get Address());
}
GSC

Mut abl eLi st <Per son> people =...;

Functi on<Per son, Address> addressFunction =
new Functi on<Person, Address>()

publ i c Address val ueO (Person person)

{

GS Collections | Iteration patterns

return person. get Address();
}s

Mut abl eLi st <Addr ess> addr esses = peopl e. col | ect (addr essFuncti on);

Notice that this assumes each person in the people collection has just one address. If, instead, a person has multiple
addresses, the Function returns alist of addresses for each person (alist that has only one element if the person has
just one address); theresult isaList of Lists:

GSC

Mut abl eLi st <Per son> people =...

Functi on<Per son, Mt abl eLi st <Addr ess>> addr essFuncti on =
new Functi on<Person, Mitabl eLi st <Address>>()

{

publ i ¢ Mt abl eLi st <Addr ess> val ueOf (Person person)

{
}

b
Mut abl eLi st <Mut abl eLi st <Addr ess>> addr esses =
peopl e. col | ect (addr essFuncti on);

return person. get Addresses();

Other Collect-style patterns
GS Caollections provides two speciaized variations on the Collect pattern: Flatten and GroupBy. Both patterns, like

Collect, use an code block implementing a Function to access and transform element values and return a collection.

Collect methods
These GS Caollections methods implement the Collect pattern:

collect(Function)

For each element of the collection, the Function is evaluated with the current element as the argument; returns a
new collection of the same size and the transformed type.

collect(Function, targetCollection)

Same as collect, except that the results are added to the specified targetCollection.

collect| f(Predicate, Function)

Same as collect, except that the Predicate isfirst evaluated with the element as the argument to filter the collection.

collect! f(Predicate, Function, targetCollection)

Same as collect| f, except that the results are added to the specified targetCollection.

collectWith(Predicate2, argument2)

Same as collect, but the Predicate? is evaluated with the element as one argument, plus one additional argument;
returns a new collection of the same size and the transformed type.

collectWith(Predicate2, argument2, targetCollection)
Same as collect\With, except that the results are added to a specified targetCollection.

11

GS Collections | Iteration patterns

12

Flatten pattern

Create a single, linear collection from selected values of a collection's
elements.

The Flatten pattern is a specialized form of the the Collect pattern. It returns asingle-level, or "flattened,” collection
of attribute values from a source collection's el ements.

flatCollect(Function)

Extract (and, optionally, transform) a selected attribute value from each of the calling collection's elements and add
the values to anew single-level collection (e.g., aList or Set).

Given list of people (asin the Collect example), hereis how flat Collect could be used to create aflat list from the
address fields of the person objectsin that list, using the same Function (addressFunction):

Pseudocode create <newcol | ecti on>
for each <el enent> of <coll ection>

<resul ts> = transform <el enment >)
Add all <results> to <newcol | ection>

JDK
Li st <Addr ess> addresses = new ArraylLi st <Address>();
for (Person person : people)
{
addr esses. addAl | (per son. get Addr esses());
}
GSC

Mut abl eLi st <Addr ess> addresses = people.fl at Col | ect (addressFunction);

Note the flatCollect method's similarity to a collect method having the same signature: each method's Function
parameter maps to an Iterable type. Thisis optional for collect, but required of flatCollect. Both methods return a
new collection. The differenceisthat collect in thisform creates a collection of collections from asimple List, Set or
Bag, while flatCollect performs adifferent (and in thisinstance, somewhat more useful) action, returning aflat list of
addresses.

GroupBy pattern

Create a Multimap from a collection by grouping on a selected or
generated key value.

The GroupBy pattern gathers the elements on the collection into a map-like container called a Multimap, which

associates multiple values for each key. The Function is applied to each element and the result is used as the key into

the Multimap. The elements are traversed in the same order as they would be in a ForEach pattern .
groupBy(Function)

Group the elements into a new Multimap. Uses the Function to get the key for each element.

groupBy(Function, targetMultimap)
Same as groupBy except that results are added to the specified targetMultimap.

groupByEach(Function)

Same as groupBY except that the Function transforms each value into multiple keys, returning anew Multimap
containing all the key/value pairs.

GS Collections | Iteration patterns

Short-circuit patterns

Methods that control processing by testing a collection for a logical
condition: includes detect, anySatisfy, and all Satisfy.

The "short-circuit" patterns - Detect, AnySatisfy and AllSatisfy - are so called because they describe methods that
cease execution when a specific condition is met. With each iteration, the Predicate is evaluated. If the evaluation
resolves as a specified boolean (true/false) value, then iteration halts and returns the appropriate value.

Detect pattern
Finds and returns the first element that satisfies a given logical
expression.

Detect returns the first element that satisfies a Predicate. If no true evaluation occurs, all elementsin the collection
are tested and the method returnsnull.

Pseudocode for each <el ement> of <collection>
if condition(<el enent>)
return <el ement >

JDK
for (int i =0; i <list.size(); i++)
{
Integer v = list.get(i);
if (v.intValue() > 50)
{
return v;
}
return null;
}
GSC

list.detect(Predicates. greaterThan(50));

Detect methods

detect(Predicate)

Return the first element of the collection for which Predicate evaluates as true when given that element as an
argument; if no element causes Predicate to evaluate as true, the method returns null.

detect| fNone(Predicate, Function0)

Same as detect, but if no element causes Predicate to evaluate as true, return the result of evaluating FunctionO.

AnySatisfy pattern
Determine if any collection element satisfies a given logical expression.

The AnySatisfy- method tests for the first occurrence of an element that the Predicate evaluates as true. If such an
element is found, execution halts and the method returns true; otherwise, the it returns false.

Pseudocode for each <el enent> of <collection>
if condition(<el enent>)
return true
otherwi se return fal se

JDK

for (int i =0; i < list.size(); i++)

Integer v = list.get(i);
if (v.intValue() > 50)

13

GS Collections | Iteration patterns

14

{
}

return fal se

return true;

GSC
return |ist.anySatisfy(Predicates. greaterThan(50));

AnySatisfy methods

anySatisfy(Predicate)

Return true if the Predicate evaluates as true for any element of the collection. Otherwise (or if the collection is
empty), return false.

anySatisfyWith(Predicate2, parameter)

Return true if the Predicate? evaluates as true for any element of the collection. Otherwise (or if the collection is
empty), return false.

AllSatisfy pattern
Determineif all collection elements satisfy a given logical expression.

The All Satisfy-pattern method determines whether all elements satisfy the Predicate; that is, it seeks the first element
that evaluates as false for the given predicate. If such as element is found, execution halts and the method returns
false. Otherwise, the method returns true.

Pseudocode

for each <el enent> of <coll ection>
if not condition(<el ement>)
return fal se
ot herwi se return true

JDK

for (int i =0; i < list.size(); i++)

Integer v = list.get(i);
if (v.intValue() <= 50)
{

}
}

return true;

return false

GSC
return list.allSatisfy(Predicates. greaterThan(50));

AllSatisfy methods

all Satisfy(Predicate)

Return true if the Predicate evaluates as true for all elements of the collection. Otherwise (or if the collection is
empty), return false.

allSatisfyWith(Predicate2, parameter)

Return true if the Predicate2 evaluates as true for all elements of the collection. Otherwise (or if the collectionis
empty), return false.

GS Collections | Iteration patterns

ForEach pattern
Perform a calculation on each element of the current collection.

The ForEach pattern defines the most basic iteration operation that can be used with all collection types. Unlike the
other patterns discussed in this topic, the ForEach pattern prescribes methods that operate on each element of the
calling collection object, with no value returned by the method itself.

In GS Caollections, the for Each method offers the most straightforward replacement for the Java for loop. It executes
the code in a Procedure on each element. Y ou can use these methods to perform some action using the values of the
source collection - for example, to print avalue or to call another method on each element.

Pseudocode for each <el enent> of <collection>
eval uat e(<el enment >)
JDK
for (int i =0; i <list.size(); i++)
{
t hi s. doSonet hi ng(list.get(i));
}
GSC

|'i st.forEach(new Procedure()

public void val ue(Ohj ect each)

{

}
1)

doSonet hi ng(each) ;

ForEach methods

for Each(Procedure)
For each element, the code block is evaluated with the element as the argument.

for Eachlf(Predicate, Procedure)

For each element where Predicate evaluates as true, Procedure is evaluated with the current element as the
argument.

for Each(Procedure, fromindex, toindex)

Iterates over the section of a MutablelList covered by the specified inclusive indexes.

for EachWith(Procedure2, parameter)

For each element of the collection, the code block is evaluated with the element as the first argument, and the
specified parameter as the second argument.

for EachWithlndex(Objectl ntProcedure)

Iterates over a collection passing each element and the current relative int index to the specified instance of
ProcedureWithint

for EachWithl ndex(Objectl ntProcedure, fromlndex, tol ndex)

Iterates over the section of the list covered by the specified inclusive indexes.

15

GS Collections | Iteration patterns

16

Injectinto pattern

Calculate and maintain a running value during iteration; use each
evaluated result as an argument in the next iteration.

The Injectinto pattern is used to carry a computed result from one iteration as input to the next. In this pattern, the
injectlnto method takes an initia injected value as a parameter. Thisvalueis used as the first argument to a two-
argument code block; the current element (for each iteration of the collection) istaken as the second argument.

For each iteration, the code block's evaluation result is passed to the next iteration as the first argument (the injected
value) of the code block, with the (new) current element as the second argument. The injectinto() method returns the
code block's cumulative result upon the final iteration.

Pseudocode set <result> to <initialval ue>
for each <el ement> of <collection>
<resul t> = apply(<result>, <elenent>)
return <result>

JDK
List<Integer> |list = Lists.nutable.of (1, 2);
int result = 5;
for (int i =0; i <list.size(); i++)
Integer v = list.get(i);
result =result + v.intValue();
}
GSC

Lists.mutable.of (1, 2).injectlnto(3, AddFunction.|NTEGER);

Injectinto methods

injectlnto(injectedValue, Function2)

Return the final result of all evaluations using as the arguments each element of the collection, and the result of the
previous iteration's evaluation.

injectl nto(intlnjectedValue, | ntObjectTol ntFunction)

Return the final result of all evaluations using as the arguments each element of the collection, and the result of the
previous iteration's eval uation.

injectl nto(intValue, 1 ntObjectTol ntFunction)

Return the final result of all evaluations using as the arguments each element of the collection, and the result of the
previous iteration's evaluation. The injected value and final result are both primitiveints.

injectlnto(longValue, LongObjectToL ongFunction)

Return the final result of all evaluations using as the arguments each element of the collection, and the result of the
previous iteration's evaluation. The injected value and result are both primitive longs.

inj ectl nto(doubleValue, DoubleObjectToDoubleFunction)

Return the final result of all evaluations using as the arguments each element of the collection, and the result of the
previous iteration's evaluation. The injected value and result are both primitive doubles.

GS Collections | Iteration patterns

Richlterable is the most important interface in GS Collections. It provides the blueprint for all non-mutating iteration
patterns. It represents an object made up of elements that can be individually and consecutively viewed or evaluated
(aniterable), and it prescribes the actions that can be performed with each evaluation (the patterns). The most
commonly used implementations include FastList and UnifiedSet.

Richlterable is extended by Listlterable, Setlterable, Bag, and Mapl terable. Mapl terableisiterable on its values
using the Richlterable API.

Richlterableis also extended by MutableCollection, and indirectly by MutableList and MutableSet (which

also extend the mutable Java Collection types List and Set). Another subinterface defines anon-JDK container,
MutableBag (or multiset); yet another, | mmutableCollection, delineates the immutable forms of these GS Collections
containers. These latter two interfaces are detailed in the next topic.

The subinterface Lazyl terable for the most part replicates Richlterable, but overrides some specific collection-
returning methods - collect, collect!f, select, reject, and flatCollect - so that they delay their actual execution until
the returned collection is needed, atechnique called "lazy iteration."

Lazy iteration
Deferring evaluation until necessary.

Lazy iteration is an optimization pattern in which an iteration method is invoked, but its actual execution is deferred
until its action or return values are required by another, subsequent method. In practical terms, the objectiveis
typicaly to forestall unnecessary processing, memory use, and temporary-object creation unless and until they are
needed. Lazy iteration isimplemented as an adapter on the current Richlterable collection by this method:

richlterable.aslazy() Returns a deferred-evaluation iterable. (Note the list
below of other GS Collections methods that return lazy
Iterables.)

In away, lazy iteration is a companion to the short-circuit iteration pattern described earlier, in which iteration
ceases as soon the method's purpose is achieved. In the last line of the example below, the anySatisfy() method
quits execution when it detects the "address2" element in the addr esses list created by collect(). The third element
("address 3") is never examined by anySatisfy - although it was present in addr esses.

GSC

Person personl = new Person(addressl);
Person person2 = new Person(address?2);
Person person3 = new Person(address3);
Mut abl eLi st <Per son> peopl e =
Fast Li st. newLi st Wt h(personl, person2, person3);
Mut abl eLi st <Mut abl eLi st <Addr ess>> addr esses =
peopl e. col | ect (addr essFuncti on);
Assert . assert True(addresses. anySati sfy(Predi cat es. equal (address2)));

One excess element out of three may be trivial, but if people were to be very long list (or a stream), anySatisfy will
still have to wait for the collect method to finish aggregating an equally-large temporary collection - one that will
only haveitsfirst two elements inspected. By applying alazy-iteration adapter to people, the collect iteration defers
to that of anySatisfy: only the elements anySatisfy requires are "collected.”

GSC
Mut abl eLi st <Per son> peopl e = FastList.newLi stWth(personl, person2, person3);

Lazyl t er abl e<Person> | azyPeopl e = peopl e. asLazy();
Lazyl t er abl e<Addr ess> addresses = | azyPeopl e. col | ect (addr essFuncti on);
Assert.assert True(addresses. anySati sf y(Predicates. equal (address2)));

17

GS Collections | Iteration patterns

In this example, the valuesin a Multimap are flattened and sorted, the results processed and sent to a stream by

for Each.

GSC

myMul ti map. nul ti Val uesVi ew()

/'l returns a

. sel ect (| TERABLE_S| ZE_AT_THRESHOLD) /1
. asSort edLi st (DESCENDI NG_| TERABLE_SI ZE) //

.asLazy()

.col | ect (| TERABLE_TO FORVATTED_STRI NG /1
.forEach(Procedures. println(Systemout));//

lazy iterable by default

i nvoked but deferred...

as "select" eval uates,

sort elenments in a non-Ilazy
sorted |ist.

restores the |azy adapter

i nvoked but deferred...

as "coll ect" eval uates,
send results to stream

Because alazy iterable adapter is used, the collect evaluation occurs only as the forEach evaluation calls for it; there
is no intervening collection. Without the lazy adapter, collect() would executein full, then return a collection to

for Each.

Finally, note these GS Collections methods that implicitly return alazy-iterable type.

MutableMap interface and itsimplementations

valuesView()
keysView()

entriesView()

An unmodifiable view of the map's values.

An unmodifiable view of the map's keyset.

An unmodifiable view of the map's entryset.

18

Multimap interface and its implementations

keyMultiValuePair sView() An unmodifiable view of key and multi-value pairs.

keysView() An unmodifiable view of unique keys.

keyValuePairsView() An unmodifiable view of key/value pairs.

multiValuesView() An unmodifiable view of each key's values, without the key.

Richlterable methods

These methods are available on all implementations of Richlterable.

Building strings
Methods that convert collection elements to a string that can be
appended to a stream or buffer.

The makeString method returns a representation of the calling Richlterable collection as a String object. Elements
are converted to strings as they would be by String.valueOf(Object). Y ou can specify start and end strings as
delimiters (the default is an empty string for both) and the separator string for the between-values delimiter (defaults
to comma and space).

Returns a string representation of the calling collection that
isalist of elementsin the order they are returned by the
iterator, enclosed in the startString and endString. Elements
are delimited by the separatorString.

makeString(startString, separator String,
endString)

makeString(separator Sring) Same result with no starting and ending strings.

makeString()

GSC

GS Collections | Iteration patterns

Same result with the default delimiter ", * (comma space) and
no starting and ending strings.

Mut abl eLi st<lInteger> |ist = FastList.newListWth(1, 2, 3);
String nyDelim= list.mkeString("[", "/", "]1"); // "[1/2/3]"

String mySeper = |list.makeString("/"); /[l "1/ 23"
String
defaul t=Ilist.makeString(); /rt1, 2, 3"

The appendString method uses forms similar to makeString, but the string representation of the collection is written
to a Java Appendable object, such as a PrintStream, StringBuilder or StringBuffer; the method itself isvoid.

appendString(Appendable, startString, separator Sring, Appends a string representation of this collection

endSring)

onto the given Appendable using the specified
start, end, and separator strings

appendString(Appendable, separator tring) Appends with specified separator, but no starting

or ending strings.

appendString(Appendable) Appends with the default delimiter ", " (comma

GSC

space) and no starting and ending strings.

Mut abl eLi st<Integer> |ist = FastList.newListWth(1, 2, 3);
Appendabl e nmyStringBui der = new StringBuil der();
|i st.appendString(nmyStringBuider, "[", "/", "1"); //"[1/2/3]");

Counting elements

Get the total number of elements that satisfy a condition.

The count and countWith methods cal cul ate the number of collection elements that satisfy a given predicate. The
countWith method takes a second parameter that is used as an additional argument in evaluating the current element.

count(Predicate)

For each element of the collection, Predicate is evaluated with the current element asits argument. The count is
incremented if the Predicate evaluates as true. For example:

GSC

return peopl e. count (new Predi cat e<Person>() {
publ i c bool ean val ue(Person person) {

return person. get Address().getState().get Nane().equal s("New York");
}

1)

countWith(Predicate2, parameter)

For each element of the collection, Predicate? is evaluated with the element as the first argument and the specified
parameter as the second argument. The count isincremented if the discriminator evaluates astrue.

GSC

return | astNanes. count Wth(Predicate2. equal (), "Snmith");

Use these methods to get the total number of collection items or to determine whether the collection is empty.

size()

Returns the number of itemsin the collection.

19

GS Collections | Iteration patterns

isEmpty() Returnstrue if thisiterable has zero items.

notEmpty() Returnstrue if thisiterable has greater than zero items.

Finding elements
Locate elements by iteration position or highest/lowest value.

The getFirst and getl ast methods return the first and last elements, respectively of a Richlterable collection. In the
case of alList, these are the elements at the first and last index. For all any other collections, getFirst and getl ast
return the first and last elements that would be returned by an iterator. Note that the first or last element of a hash-
based Set could be any element, because element order in a hashed structure is not defined. Both methods return null
if the collection isempty. If null isavalid element, use the isEmpty method to determine if the container isin fact

empty.
getFirst() Returnsthe first element of an iterable collection.
getL ast() Returns the last element of an iterable collection.

The min() and max() methods, without parameters, return an element from an iterable based on its natural order, that
is, by calling the compareTo() method on each element.

max() Returns the maximum value out of a collection of Comparable objects (e.g., List<Integer>).
min() Returns the minimum value out of a collection of Comparable objects (e.g. List<Integer>).
GSC

Ri chlterabl e<I nteger> iterable = FastList.newListWth(5, 4, 8, 9, 1);
Assert. assert Equal s(I nteger.val ueX (9), iterable.max());
Assert.assert Equal s(I nteger.valueO (1), iterable.mn());

If any element in the iterable is not comparable, then a ClassCastException is thrown.

GSC
Ri chlterabl e<Obj ect> iterable = FastList.newListWth(5, 4, 8, 9, 1, new Foo());

iterable.max(); // throws C assCast Exception

The min() and max() methods each have an overload that takes a Comparator that determines the natural order.

max(Comparator) Returns the maximum element out of this collection based on the comparator.
min(Comparator) Returns the minimum element out of this collection based on the comparator.
GSC

public class SillyWal k
public final int wggles;

public SillyWalk(int w ggles)
{

}

this.w ggles = wiggl es;

private static final Conparator<SillyWal k> SILLY_WALK_COWPARATCOR =
new Conpar at or <Si | | yWal k>()

{
public int compare(Sillywalk ol, SillyWalk 02)

{
}

return ol.w ggles - 02.wggles;

20

GS Collections | Iteration patterns

Sillyvalk sillywal k2
Sillyvalk sillywal k3

new Sillywval k(2);
new SillyWal k(3);

Ri chlterabl e<Si | | yWal k> wal ks = FastList.newLi stWth(sillyWal k2, sillyWalk3);

Assert.assert Equal s(sillywal k3, wal ks. max(SI LLY_WALK_COWPARATOR)) ;
Assert.assert Equal s(sillywal k2, wal ks. mi n(SI LLY_WALK_COWVPARATOR)) ;

The related methods minBy() and maxBy() take a Function and return the minimum or maximum element in the
Richlterable based on the natural order of the attribute returned by the selector.

maxBy(Function) Returns the maximum element out of this collection based on the result of
applying the Function to each element.

minBy(Function) Returns the minimum element out of this collection based on the result of
applying the Function to each element.

Here, we find the youngest person (the minimum person by age).

GSC _ _
Person alice = new Person("Alice", 40);

Person bob = new Person("Bob", 30);
Person charlie = new Person("Charlie", 50);
Mut abl eLi st <Per son> peopl e = FastList.newLi stWth(alice, bob, charlie);

Assert . assert Equal s(bob, peopl e. m nBy(Person. TO AGE));

In the code example we already had an Function, so calling minBy() was more concise than calling min(). These two
forms are equivalent though.

GSC
peopl e. m nBy(Person. TO_AGE) ;

peopl e. m n(Conpar at or s. byFunct i on(Person. TO_AGE)) ;

Using chunk and zip to create collections
Grouping and pairing elements of one or more collections.

The chunk method can be used to gather the elements of a collection into chunks; that is, it creates a collection made
up of collections of a specified fixed size (an integer). If the size doesn't divide evenly into the total of collection
elements, then the final chunk issmaller.

chunk(size)

Returns a new collection with the source collection's elements grouped in "chunks," with size elementsin each
chunk, and the last chunk containing the remaining elements, if any.

GSC

Mut abl eLi st<lInteger> list =
FastLi st.newListWth(1, 2, 3, 4, 5, 6, 7, 8 9, 10);
Ri chl t er abl e<Ri chl t er abl e<l nt eger >> chunks = |ist.chunk(4);

System out. pri ntl n(chunks);

This example prints out:

[[1, 2, 3, 4], [5 6, 7, 8], [9, 10]]

21

GS Collections | Iteration patterns

22

The zip method pairs up the elements of one Richlterable with those of second. If one of the two collections has
more elements than the other, those remaining elements are dropped. The zipWithl ndex method is a special case of
zip that pairs the elementsin a collection with their index positions.

zip(Richlterable)

Returns anew Richlterable by combining, into pairs, corresponding elements from the calling Richlterable
collection and the Richlterable collection named in the parameter. If one of the two collectionsis longer, its
remaining elements are ignored..

GSC
Mut abl eLi st<String> listl =

Fast Li st. newLi stWth("One", "Two", "Three", "Truncated");
Mut abl eLi st<String> |ist2 = FastList.newLi stWth("Four", "Five", "Six");
Mut abl eLi st <Pair<String, String>> pairs = listl.zip(list2);
System out. println(pairs);

This example prints out:
[One: Four, Two: Five, Three: Six]

ZzipWithlndex()

Returns anew Richlterable consisting of the calling collection's elements, each paired with its index (beginning
with index 0).

GSC
Mut abl eLi st<String> |list = FastList.newListWth("One", "Two", "Three");

Mut abl eLi st <Pai r<String, Integer>> pairs = |ist.zi pWthlndex();
System out. println(pairs);

This example prints out:
[One: 0, Two: 1, Three: 2]

Performance optimized methods: reusing two-argument code blocks

Using selectWith, rejectWith, and collect\With inside other iteration
patterns (or loops) where code blocks can be created outside of the outer
iteration patterns or made static.

The iteration patterns collect, select, and r g ect each take asingle parameter, a code block that itself takes a
single argument. These patterns have alternate forms, methods named collect\With, selectWith, and rejectWith
respectively, which take two parameters:

« Thefirst method parameter is a code block that itself takes two arguments; the first argument of the code block is
the current element with each iteration.

» The second method parameter is an object that is then passed to the code block asits second argument.

selectWith(Predicate2, argument)
rej ectWith(Predicate2, argument)

For each element of the collection, Predicate? is evaluated with the element as one argument, plus one additional
argument; selected or rejected elements are returned in a new collection of the same type.

collectWith(Predicate2, argument)

Same as the collect method, but two arguments are passed to the code block; returns a new collection of the same
type and size.

GS Collections | Iteration patterns

These"- With" forms accomplish exactly the same actions as their basic counterparts. Although slightly more
verbose, they allow for a specific performance optimization, that is re-use of the code block with different arguments.
Hereis an example of select that findsthe adultsin alist of people. First, the JDK version, and then rewritten in GS

Collections form:

JDK

GSC

Li st <Person> people =...;
Li st <Person> adults new Arrayli st <Person>();
for (Person person : people)

if (person.getAge() >= 18)

adul t s. add(person);

Mut abl eLi st <Per son> peopl e
Mut abl eLi st <Person> adul ts
new Predi cat e<Per son>()

peopl e. sel ect (

publ i c bool ean accept (Person each)

{
}

return each. get Age() >= 18

1)

Here's the same a gorithm, again in GS Collections, thistime using select\With():

GSC

Mut abl eLi st <Per son> people =...
Mut abl eLi st <Person> adul ts = peopl e. sel ect Wt h(
new Predi cat e2<Per son, |nteger>()

{
@verride
publ i c bool ean accept (Person eachPerson, |nteger age)
{
return eachPerson. get Age() > age
}
}, 18);

In this single instance, there is no reason to write it out this longer way; the extra generality - making age the second
argument to the Predicate? - is unnecessary.

It does make sense, however, if you wanted to filter on multiple ages: you could hold onto and re-use the Predicate2,
thereby creating less garbage.

GSC

Mut abl eLi st <Per son> people =...
Pr edi cat e2<Person, |nteger> agePredi cate =
new Predi cat e2<Per son, | nteger>()

{
@verride
publ i c bool ean accept (Person eachPerson, |nteger age)
{
return eachPerson. get Age() > age
}
b

Mut abl eLi st <Person> drivers = peopl e. sel ect Wt h(agePredi cate, 17);
Mut abl eLi st <Person> voters = peopl e. sel ect Wt h(agePredi cate, 18);
Mut abl eLi st <Per son> dri nkers = peopl e. sel ect Wt h(agePredi cate, 21);

23

GS Collections | Iteration patterns

24

Containers derived from the Map interfaces (Mapl terable, MutableMap, | mmutableMap) and the Multimap
interfaces (MutableListMultimap, et al.) differ from those implementing MutableList, MutableSet, and MutableBag,
all of whose iteration patterns are specified by Richlterable. Maps, are a special case, comprising two separate,
though joined groups of elements. a set of keys and their associated values.

To enable iteration over the special structure of Maps and Multimaps, GS Collections provides a set of map-specific
methods whose operations and returned objects are specific to the keys, values, and entries (combined key-value
elements) that make up aMap.

Creating iterable views of maps

Wrapper classes that return an iterable view of a map; ForEach patterns
for Map containers.

These three methods each return an unmodifiable Richlterable view of a Map. They are essentially wrappers over the
modifiable, non-lazy objects returned by the corresponding Java Collections Framework methods.

valuesView() (Maps and Multimaps) Returns an unmodifiable Richlterable wrapper over the
values of the Map.

keysView() (Maps and Multimaps) Returns an unmodifiable Richl terable wrapper over the
keySet of the Map.

entriesView() (Maps only) Returns an unmodifiable Richlterable wrapper over the entrySet of
the Map.

ForEach Iteration

These three methods call a code block for each element on a Map (all return void).
for EachK ey(Procedure) Callsthe Procedure on each key of the Map.
for EachValue(Procedure) Calls the Procedure on each value of the Map.
forEachKeyValue(Procedure2) Callsthe Procedure on each key-value pair of the Map.

Collecting entries
Gather entries from another collection into a Map

Use the collectK eysAndValues method to add all the entries derived from another collection into the current Map.

collectK eysAndValues(collection, keySelector, valueSelector)

(Maps only) The key and value for each entry is determined by applying the keySelector and valueSelector (in each
case, a Function) to each item in collection. Each is converted into a key-value entry and inserted into the Map. If a
new entry has the same key as an existing entry in the calling map, the new entry's value replaces that of the existing
entry.

GS Collections | Iteration patterns

Finding, testing and putting values
Detect a value by its key and, optionally, insert or return other values.

The getlfAbsent... and ifPresentApply methods locate a specified key and return a map value that corresponds to
that key. Depending on whether avalueisfound at the given key, each method performs a specific action.

getl fAbsent(key, FunctionO)

Returns the value in the Map that corresponds to the specified key; if there is no value at the key, returns the result
of evaluating the specified FunctionO (here, specifically, acode block without parameters that returns some object).

getl fAbsentPut(key, FunctionO)

Returns the value in the Map that corresponds to the specified key; if there is no value at the key, returns the result
of evaluating the specified FunctionO, and puts that value in the map at the specified key

getl fAbsentPutWith(key, Function, parameter)

Returns the value in the Map that corresponds to the specified key; if there is no value at the key, returns the result
of evaluating the specified one-argument Function using the specified parameter, and put that value in the map at
the specified key.

getl fAbsentWith(key, Function, parameter)

Returns the value in the Map that corresponds to the specified key; if there is no value at the key, returns the result
of evaluating the specified Function and parameter.

ifPresentApply(key, Function)

If thereis avaluein the Map that corresponds to the specified key, returns the result of evaluating the specified
Function with the value, otherwise returns null.

25

GS Collections | Iteration patterns

26

Chapter

2

Collections and containers

Topics:

e Basic collection types

» Creating and converting
collections

e Protecting collections

What is perhaps most distinctive about the GS Collections collection classes
iswhat (quite properly) is hidden: their implementation of iteration patterns.
Through this encapsulation, GS Collectionsis able to provide optimized
versions of each method on each container. For example, the first of the
classes we'll discuss here, FastList is array-based; it iterates using indexed
access directly against itsinternal array.

WE'I begin with the GS Collections implementations of types having analogs
in the Java Collections Framework (JCF). We'll then discuss the new types
Bag and Multimap, the Immutable collections, and protective wrappers.

27

GS Callections | Collections and containers

28

The most commonly-used GS Collections classes are FastList, UnifiedSet, and UnifiedM ap. These collections serve
as drop-in replacements for their corresponding types in the Java Collections Framework (JCF). Note that these GS
Collections classes do not extend the JCF implementations; they are instead new implementations of both JCF and GS
Caollections interfaces, as this (highly-simplified) diagram summarizes:

JCF GS Collections
Implementations interfaces Implementations
ArrayList 4 List P MutableList P FastlList
HashSet 4 Set P MutableSet P UnifiedSet
HashMap 4 Map P MutableMap P UnifiedMap

The methods of the JCF types are primarily focused on adding or removing elements and similar, non-iterative
operations. GS Callections interfaces provide methods for iteration patterns that for the most part, do not modify
(mutate) the source collection, but rather return a new collection or information about the source collection.

MutableList
An ordered collection that allows duplicate elements.

The MutableList interface (extending Listl terable) describes a collection of elements that have a specific order, with
duplicate values permitted.

Mutablel ist extends the JCF List interface and has the same contract. It also extends Richl terable which provides
the iteration methods described in the previous topic,

The most common implementation of MutableList is FastList, which can be used to replace the familiar
java.util. ArrayList.Hereis a comparison of how the two types can be created.

Class Example

Arrayl_ist (JCF) Li st<String> conpari son = new
ArrayLi st<String>();
conpari son. add(" Contast");
conpari son. add("| BM ;
conpari son. add("M crosoft");
conpari son. add("M crosoft");
return conparison;

FastList (GSC) return FastList.newListWth("Concast","IBM, "Mcrosoft", "Mcrosoft");

The MutableList interface includes the sortThis and r ever se methods, which are similar to the static methods with
the same names on java.util.Collections.Both are mutating methods. Here is an example of using sort using the JDK
API and then GS Collections

Class Example
ArrayLiSt (JCF) Col | ections. sort (peopl e, new Conpar at or <Per son>()

public int conpare(Person ol, Person 02)
{

nt |astNane = o0l. getLast Nane().conpareTo(02. get Last Narme());
f (lastNane != 0)

[
[
{

}
return ol.getFirstNanme().conpareTo(o02. getFirstName());

return | ast Nane;

GS Callections | Collections and containers

Class Example
|

FastList (GSC) peopl e. sort Thi s(new Conpar at or <Per son>()
{

public int conpare(Person ol, Person 02)

{
int |astNanme = ol. get Last Nane().conpareTo(02. get Last Nanme());
if (lastNane != 0)
{
return | ast Nane;
}
return ol.getFirstNanme().conpareTo(02. getFirstName());
}

1)

Mutablel ist adds a new method called sortThisBy, which gets some attribute from each element using a Function
and then sorts the list by the natural order of that attribute.

Class Example

ArrayList (JCF) Col | ecti ons. sort (peopl e, Functions.toConparator (Person. TO AGE));

FastList (GSC) peopl e. sort Thi sBy(Person. TO AGE) ;

Hereis an example comparing reverse() using the JCF and using GS Collections; both are mutating methods.
Class Example

ArrayList (JCF) Col | ecti ons. rever se(peopl e);

FastList (GSC) peopl e. reverse();

The toRever sed method on MutableL ist lets you reverse alist without mutating it. Here is an example of how to
accomplish that in the JCF and in GS Collections.

Class Example

ArrayList (JCF) Li st <Person> rever sed = new Arrayli st <Per son>(peopl e)
Col | ections. reverse(reversed);

FastList (GSC) Mut abl eLi st <Per son> reversed = peopl e. toReversed();

MutableSet
An unordered collection that allows no duplicate elements.

The MutableSet interface (extending Setl terable) defines an unordered collection that does not permit duplicate
elements. An attempt to add duplicate elements to a MutableSet container isignored without throwing an exception.
The order in which the elements are processed during iteration is not specified.

MutableSet extends Setlterable and has the same contract. The most common implementation is UnifiedSet, whichis
the GS Collections counterpart of HashSet in the Java Collections Framework. As with MutableL ist, the MutableSet
interface extends the Richl terable interface.

Class Example

HashSet (JDK)

Set <String> conpari son = new HashSet <String>();
conpari son. add("| BM");

conpari son. add("M crosoft");

conpari son. add(" Oracl e");

29

GS Callections | Collections and containers

30

Class Example

conpari son. add(" Contast");
return conparison;

UnifiedSet (GSC)
return UnifiedSet.newSetWth("IBM', "Mcrosoft", "Verizon", "Contast");

MutableMap
A collection of key/value pairs

The MutableMap interface defines an association of key/value pairs. It extends the Mapl terable interface, which
furnishes a set of iteration methods especially for the key/value structure of aMap collection. These include
unmodifiable views of keys, values or pair-entries using the keysView, valuesView and entriesView methods,
respectively.

The mutabl e subinterfaces of Maplterable also extend the JCF Map interface.
The most common implementation of MutableMap is UnifiedM ap, which can replace the Java class HashMap.

Class Example
HashMap (JDK)
Map<I nt eger, String> map = new HashMap<l nteger, String>();
map. put (1, "1");
map. put (2, "2");
map. put (3, "3");
UnifiedMap
GSC Miut abl eMap<I nteger, String> map = Unifi edMap. newW t hkeysVval ues(1, "1", 2, "2",
(G=C) 3, "3");
MutableBag

An unordered collection that allows duplicates.

A MutableBag (extending Bag) combines the less-restrictive aspects of a Set - in that it is an unordered collection
- and a List, which permits adding duplicate values. It isimplemented using a specialized kind of map, called a
multiset, which pairs each distinct value as a key with the count of its occurrencesin the collection as a value.

For example, thislist: Appl e
Pear
Orange
Orange

Appl e
Orange

could create this bag: Pear 1
Orange 3

Appl e

GSC
return MutableBag < String > bag =

HashBag. newBagW t h(" Appl e", "Pear", "Orange", "Apple", "Apple", "Orange");

GS Callections | Collections and containers

The MutableBag interface includes methods for getting and manipulating the number of occurrences of an item. For
example, to determine the number of unique elements in a MutableBag, use the sizeDistinct() method.

Multimap
A map-like container that can have multiple values for each key

In aMultimap container, each key can be associated with multiple values. It is, in this sense, similar to aMap, but
one whose values consist of individual collections of a specified type, called the backing collection. A Multimap is
useful in situations where you would otherwise use Map<K, Collection<V>>,

Unlike the other basic GS Collections containers, Multimap does not extend Richlterable, but resides along with its
subinterfacesin a separate API. The Richlterable methods are extended by the backing collection types.

Depending on the implementation, the "values' in a Multimap can be stored in Lists, Sets or Bags. For example, the
FastListMultimap classis backed by a UnifiedM ap that associates each key with a FastList that preserves the order
in which the values are added and allows duplicate to be added.

A Multimap is the type returned by the groupBy method. Here is an example in which we group alist of words by
their length, obtaining a Multimap with integer (word=length) keys and lists of words having that length for values.

Thissmplelist: here producesaList-backed Multimap: key value<list>
are 1 a
a 3 are,(feware,not,too
few 4 here,that,l ong
wor ds 5 words
t hat
are
not
t 0o
| ong

The code that performs this action uses the groupBy method.

GSC
Mut abl eLi st<String> words = FastList.new.istWth("here", "are", "a", "few',

"words", "that", "are", "not", "too", "long");
Mut abl eLi st Mul ti map<I nteger, String> nmultimp =
wor ds. groupBy(St ri ngFunctions. | ength());

Theinterface MutableListMultimap extends the Multimap interface and tells us the type of its backing collections.
Since this example uses Lists, the word "are" is allowed to occur twice in thelist at key 3.

If we use groupBy on the same source list to generate a Multimap of Sets, the resulting backing collections will
eliminate duplicate entries and disregard the order of elementsin the source List:

GSC
Mut abl eSet Mul ti map<I| nteger, String> nmultimp =
wor ds. groupBy(St ri ngFunctions. | ength());
With duplicates removed, only four 3-letter words key value <list>
remain.

31

GS Callections | Collections and containers

32

t oo,ar e,f ew,not ,
4 | ong,her e t hat

wor ds

The following methods can be used to convert one container type to another. All of these methods are on
Richlterable. To create immutable and fixed-size collections, refer to Immutable collections.

toList() Converts the collection to the default MutableList implementation (FastList).
toSet() Converts the collection to the default MutableSet implementation (UnifiedSet).
toBag() Converts the collection to the default MutableBag implementation (HashBag).
toM ap(keySelector, Converts the collection to the default MutableMap implementation
valueSelector) (UnifiedM ap) using the specified keySel ectors and valueSelectors.
toSortedList() Converts the collection to the default MutableList implementation (FastList)

and sortsit using the natural order of the elements.

toSor tedL ist(Comparator) Converts the collection to the default MutableList implementation (FastList)
and sortsit using the specified Comparator.

These methods always return new mutable copies. for example, calling toList() on aFastList, returns a new
FastList.

To create a new collection of the same type

newEmpty() Creates a new, empty, and mutable container of the same collection type. For
example, if thisinstance isa FastL ist, this method will return a new empty
FastList. If the class of thisinstance isimmutable (see below) or fixed size (for
example, asingleton List) then a mutable alternative to the class is returned.

GS Caollections provides specia interfaces for controlling and preventing changes to containers and their elements.

» Immutable collection: a copy that is permanently unchangeable.
« Unmodifiable collection: aread-only interface wrapped over a backing collection that remains mutable.
« Synchronized collection: awrapper that presents a mostly thread-safe view of a collection.

Immutable collections
A read-only snapshot of a collection; once created, it can never be
modified.

All of the basic containers in GS Collections have interfaces for both mutable and immutable (unchangeable) forms.
This departs somewhat from the JCF model, in which most containers are mutable.

An immutable collection isjust that - once created, it can never be modified, retaining the same internal references
and data throughout its lifespan. An immutable collection is equal to a corresponding mutable collection with the
same contents; a MutableList and an Immutablelist can be equal.

GS Callections | Collections and containers

Because its state does not change over time, an immutable collection is always thread-safe. Using immutable
collections where feasible can serve to make your code easier to read and understand.

All of the interfaces and implementations discussed so far in this topic have been mutable versions of their respective
types. Each of these containers has an immutable counterpart: These are the corresponding interfaces:

M utable types Immutable types
Mutablel ist Immutablelist
MutableSet I mmutableSet
MutableBag ImmutableBag
MutableMap I mmutableMap
MutableMultimap I mmutableMultimap

The method that returns an immutable collection for all container typesis:

MutableCollection.tol mmutable() Returns an immutable copy of atype corresponding to the
source MutableCollection.

An immutable-collection interface lacks mutating methods, such as add() and remove(). Instead, immutable
collections have methods that return new, immutable copies with or without specified elements:

ImmutableCollection.new\With(element) Returns a new immutable copy of |mmutableCollection with
element added.
ImmutableCollection.new\WithAll(Iterable) Returns a new immutable copy of ImmutableCollection with

the elements of Iterable added.

ImmutableCollection.new\Without (element) Returns a new immutable copy of |mmutableCollection with
element removed.

ImmutableCollection.new\WithoutAll(Iterable) Returns a new immutable copy of |mmutableCollection with
the elements of Iterable removed.

Note that the iteration methods of an immutable container - such as select, r e ect, and collect - aso produce new,
immutable collections.

Immutable Collection Factory Classes

Thefactory classes Lists, Sets, Bags, and M aps create immutable collections. These factories also provide methods
for creating fixed-size collections, which have been superseded by immutable collections.

| mut abl eLi st <l nt eger > i nmut abl eLi st = Lists.inmutable.of (1, 2, 3);
| mmut abl eSet <l nt eger > i mut abl eSet = Sets.imutable.of (1, 2, 3);
Bag<I nt eger > i mmut abl eBag = Bags.i mmutabl e.of (1, 2, 2, 3);
| mrut abl eMap<l nt eger, String> i nmutabl eMap =
Maps. i mut abl e. of (1, "one", 2, "tw", 3, "three");
These factories highlight yet another benefit of immutable collections: they let you create efficient containers that are
sized according to their contents. In cases where there are many, even millions of collections, each with asize less
than 10, thisis an important advantage.

33

GS Callections | Collections and containers

Protective wrappers

Wrapper classes providing read-only or thread-safe views of a
collection.

Unmodifiable Collections

In both the JCF and GS Collections, a collection may be rendered unmodifiable. In GS Collections, thisis done by
means of the asUnmadifiable method, which returns aread-only view of the calling collection. This means that the
mutating methods of the collection (e.g., add, remove) are still present, but throw exceptions if called.

MutableCollection.asUnmadifiable() Returns aread-only view of the source collection.
Synchronized Collections

GS Caollections provides awrapper for rendering a modifiable but thread-safe view that holds alock when amethod is
called and releases the lock upon compl etion.

MutableCollection.asSynchronized() Returns a synchronized copy of the source collection.

Chapter

3

Code blocks

Topics: A code block, in GS Collections terms, is a single-abstract-method object
that is passed as a parameter to an iteration method. It is an abstraction that
« Common code block types represents the eval uation of each element in the course of iteration. It helps

us to further separate what is being done from how it's done. Thistopic
enumerates the basic code block types - the GS Collections interfaces and
classes - and the relevant methods to which they apply.

What we call a"code block” in GS Collectionsis roughly analogous to what
ismore formally and precisely termed a closure or first-class function. A
closure is afunction that, when passed to a method, can access and modify
variablesin its enclosing scope. Thisis afacility that the Java language does
not (as of thiswriting) support. The closest analog to a closure in Javaisthe
anonymous inner class (which allows read access to local final variables),
and thisis one technique among severa for implementing code blocksin GS
Collections.

In thisinline example, the highlighted text is a nameless code block, used
as predicate (ayes/no function used as afilter) that implements a Predicate
interface. This code block is passed as the parameter of a select method call.
A Predicate has one method of its own, accept(), which takes asits sole
argument each, the current element upon each iteration of the enclosing
select method.

GSC
Mut abl eLi st <Per son> texans = this. peopl e. sel ect (new
Pr edi cat e<Person>() {
publ i c bool ean accept (Person each) {
return each. get Address().getState().equal s("TX");

}
)5

Verify.assertSize(1l, texans);

In this case, if the value of state field for any element in people equals"TX"
then the select method adds that element to the new list, texans.

About parameter and argument:

These terms are often (if inaccurately) used interchangeably to refer to
method or function inputs. (The usual distinction holds that parameter refers
to aformal definition of the input, while argument denotes the actual values.)
For the limited purposes of this guide - and in particular the scope of this
topic - we use parameter to specify the input to an iteration method - in this
example, select. These parameters can take the form of the code block (as
described in thistopic), which itself is an object with methods. The input for a
code block we refer to here as the argument - in this example, the argument is
each (the "current element” upon each iteration).

GS Caollections | Code blocks

36

Common code block types

Here isasummary of the most commonly-used code blocks and the GS Collections methods that use them.

Predicate Evaluates each element

of acollection (the argument), and

returns a boolean value.

Predicate?

Function (transformer): Evaluates
each element of a collection asthe

argument to the code block logic
and returns a computed value

Function2

Function3

Procedure : Executes on each
element of acollection, returns
nothing.

Procedure2

FunctionO : Executes and returns
avaue (like Callable); represents
deferred evaluation.

Comparator: "Imposes a total
ordering on some collection of
objects." (JDK)

Predicate

Arguments

One (T)

Two (T,P)

One (T)

Two (T,P)

Three (T,P,?)
One (T)

Two (T,P)

Zero

Two (T,T)

Returns

boolean

boolean

Object (V)

Object (V)

Object (V)

void

void

Object (V)

Used By

select, reject, detect,
anySatisfy, all Satisfy, count

selectWith,reg ectWith,
detectWith,
anySatisfyWith,allSatisfyWith,
countWith

collect,flatCollect, groupBy

for EachEntry() injectinto()
collectWith()

injectlntoWith

for Each, forEachK ey,
forEachValue,

for EachWith,
forEachKeyValue

getlfAbsent, getl fAbsentPut,
ifPresentApply

int (negative, 0, positive) sortThis, max, min

A Predicate is asingle-argument code block that evaluates an element and returns a boolean value. Also known asa
discriminator or filter, it is used with the filtering methods select, r g ect, detect, anySatisfy, allSatisfy, and count.

The accept method isimplemented to indicate the object passed to the method meets the criteria of this Predicate.

Predicate Factories
Predicates

Predicates?

StringPredicates

Supports equal, greaterThan, lessThan, in, notin, and, or,
instanceOf, null, notNull, anySatisfy, all Satisfy, etc.

For Predicate?s that work with methods suffixed with

"with."

Supports empty, notEmpty, contains, isAlpha,
isNumeric, isBlank, startswith, endswith, matches, etc.

GS Caollections | Code blocks

Predicate Factories
I nteger Predicates SupportsisEven, isOdd, isPositive, isNegative, isZero .
L ongPredicates SupportsisEven, isOdd, isPositive, isNegative, isZero.

Predicates factory

The Predicates class can be used to build common Predicates (predicates) to be used with filtering patterns.
Predicates supports equals, not equals, less than, greater than, less than or equal to, greater than or equal to, in, not in,
and, or, and numerous other predicate-type operations.

Some examples with select():

GSC
Mut abl eLi st <l nt eger> nyList =. ..
Mut abl eLi st <l nt eger > sel ectedl = nylLi st. sel ect (Predi cat es. great er Than(50));

Function

The Function code block in its most common usage takes each element of a collection as the argument to the code-
block logic. It selects an attribute from the element viaa"getter” - its valueOf() method. It then returns a computed
value or, if no evaluation logic is performed, the attribute itself.

Function code blocks are used as a parameter in avariety of common GS Collections methods:

« With the collect method to calculate a new value for each element of a given collection, and then return a
transformed collection of the same type.

« With the groupBy method to generate keys for each nested collection (values) of anew Multimap.

« WiththeflatCollect method, where it must return an lterable that gets "flattened” with other iterables, into a
single collection.

« With the Predicates factory's attributeOperator methods - such as attributelessThanOrEqual To - to build
Predicate (boolean) objects.

Function Factories

Functions (static class)

getToClass() getToString()
getPassThru()
Other functions
[fFunction Supportsif and else using a discriminator with Function.

CaseFunction This allows for multi-conditional or rule based selector using Predicates (use this with
guidance).

Procedure

A Procedureisacode block that performs an evaluation on its single argument and returns nothing. A Procedureis
most commonly used with ForEach -pattern methods.

Count and calculate

CountProcedure Apply a Predicate to an object and increment a count if it returns true.

37

GS Caollections | Code blocks

CounterProcedure Wrap a specified block and keeps track of the number of timesit is executed.

SplitDoubleSumProcedure Create two double sums, one for items that return true for the specified
discriminator and one for items that return false. A DoubleSelector must be
provided.

SplitInteger SumProcedure Create two integer sums, one for items that return true for the specified
discriminator and one for items that return false. An IntegerSelector must be
provided.

SumProcedure Summarize the elements of a collection either viaaforEach() or injectinto()

call. SumProcedure returns optimized primitive blocks for specialized
primitive subclasses of Function which result in less garbage created for
summing primitive attributes of collections.

Return a value

ResultProcedure Store aresult to be accessed after an iteration is complete; thisis useful for
determining areturn value from aforEach() invocation, which itself has no
return value.

Control execution

ChainedProcedure Chain together blocks of code to be executed in sequence;
ChainedProcedur e can chain Procedures, Functions or Function?2s.

CaseProcedure Create an object form of a case statement, which instead of being based on a
single switch value is based on alist of discriminator or block combinations.
For the first discriminator that returns true for agiven value in the case
statement, the corresponding block will be executed.

[fProcedure Evaluate the specified block only when either discriminator returnstrue. If
the result of evaluating the Predicate is false, and the devel oper has specified
that there is an elseProcedure, then the el seProcedure is eval uated.

[fProcedureWithint Apply anindex that effectively filters which objects should be used.

Modify collections and maps

CollectionAddProcedure Add elements to the specified collection when block methods are
caled.

CollectionRemoveProcedure Remove element from the specified collection when block methods
are called.

ConcurrentM apOfListsPutProcedure Use a specified Function to calculate a key for an object passed

to the value method. The object is put into a MultiReader FastList
contained in the specified Map at the position of the calculated key.

MapPutProcedure Use a specified Function to calculate the key for an object and puts
the object into the specified Map at the position of the calculated
key.

MultimapPutProcedure Use a specified Function to calculate the key for an object and puts

the object with the key into the specified MutableM ultimap.

StringBuffer Procedure Transform to string and append elements of a collection to a
StringBuffer, separated by the specified separator after trans.

StringBuilder Procedure Transform to string and append elements of a collection to a
StringBuider, separated by the specified separator.

38

Output a collection to a system

PrintInProcedure

Outputs an object to a PrintSteam using printin.

GS Caollections | Code blocks

39

GS Caollections | Code blocks

Chapter

A

Utility GS Collections

Topics:

« Utility iteration patterns
» Parallel iteration

GS Coallections includes an assortment of static utility classes, such asIterate
and Listlterate, that provide interoperability of GS Collections iteration
methods with standard Java collection classes.

Class

[terate
Listlterate
Maplterate
Arraylterate
Stringlterate

Parallelllterate

Used with

Iterables (inclusive Collections)
List

Maps

Arrays

Strings

Parallel processing

41

GS Callections | Utility GS Collections

42

Pattern
For JDK
Each

Utility GSC
Collect JDK

Utility GSC
Select JDK

Utility GSC
Regject JDK

Utility GSC
I nject JDK
Into

Utility GSC
Detect JDK

I mplementation

for (int i =0; i </list.size(); i++)

t hi s. doSonet hi ng(list.get(i));

}
Iterate. forEach(col |l ection, new Procedure() {
public void val ue(Obj ect each) {
doSonet hi ng(each) ;
}
b

Li st <Addr ess> addresses = new Arrayli st <Address>();
for (Person person : people)

addr esses. add(per son. get Address());

Iterate.collect(collection, Function. TO STRI NG SELECTOR);

Li st<Integer> greaterThanFifty = new ArrayLi st<lnteger>();
for (Integer each : list)

{
if (each.intValue() > 50)

{
}

great er ThanFi fty. add(each) ;

Iterate.sel ect(collection, Predicates.greaterThan(new | nteger(50)));

Li st<lI nteger> not Great er ThanFi fty = new ArraylLi st<I nteger>();
for (Integer each : list)

{
if (each <= 50)

not G eat er ThanFi f ty. add(each) ;

Iterate.reject(collection, Predicates.greaterThan(new | nteger(50)));

List<Integer> list = Lists.nutable.of (1, 2);

int result = 5;
for (int i =0; i < /list.size(); i++)
{

Integer v = list.get(i);

result = result + v.intValue();

Iterate.injectlnto(3, Lists.mutable.of(1, 2), AddFunction.|NTECER);

for (int i =0; i < /list.size(); i++)

GS Caollections | Utility GS Collections

Pattern I mplementation

Integer v = list.get(i);
if (v.intValue() > 50)
{

}

return null;

return v,

Utility GSC

Iterate.detect(collection, Predicates.greaterThan(new | nteger(50)));

Any JDK o L .
Satisfy }or (int i =0; i <list.size(); i++)
Integer v = list.get(i);
if (v.intValue() > 50)
{

}

return fal se;

return true;

Utility GSC

Iterate.anySatisfy(collection, Predicates.greaterThan(new |Integer(50)));

All JDK o S _
Satisfy }or (int i =0; i <list.size(); i++)
Integer v = list.get(i);
if (v.intValue() <= 50)
{

}
}

return true;

return fal se;

Utility GSC
Iterate.all Satisfy(collection, Predicates.greaterThan(new |Integer(50)));

GS Coallections also provides parallel iteration that allows for optimization of data-intensive algorithms. Parallel
implementations of several of the serial iteration patterns are provided out of the box. Note, however that parallel
agorithms are usually not the optimal solution for the problem you are facing.

Examples
Protocol Implementation

For Each pseudocode for each <el enent> of <collection>
eval uat e(<el ement >, <wit h>)

GSC _
Paral l el Iterate.forEach(list, aProcedure);
Select pseudocode create <newcol | ection>
for each <el ement> of <collection>
i f condition(<elenent> <wth>)
add <el ement> to <newcol | ecti on>
GSC
Parallellterate.select(list, Predicates.greaterThan(new |Integer(50)));
Collect pseudocode create <newcol | ecti on>

GS Callections | Utility GS Collections

Protocol Implementation

for each <el ement> of <collection>
<result> = transform<el ement>, <w th>)
add <result> to <newcol | ecti on>

GSC
Parallellterate.collect(list, aFunction);
Reject pseudocode create <newcol | ecti on>
for each <el enent> of <collection>
if not condition(<el enment>)
add <el ement> to <newcol | ecti on>
GSC

Parallellterate.reject(list, Predicates.greaterThan(new |Integer(50)));

	Contents
	About GS Collections
	Iteration patterns
	Common iteration patterns
	Select/Reject pattern
	Select and Reject methods
	Partition pattern

	Collect pattern
	Collect methods
	Flatten pattern
	GroupBy pattern

	Short-circuit patterns
	Detect pattern
	Detect methods

	AnySatisfy pattern
	AnySatisfy methods

	AllSatisfy pattern
	AllSatisfy methods

	ForEach pattern
	ForEach methods

	InjectInto pattern
	InjectInto methods

	RichIterable
	Lazy iteration
	RichIterable methods
	Building strings
	Counting elements
	Finding elements
	Using chunk and zip to create collections
	Performance optimized methods: reusing two-argument code blocks

	Map iteration methods
	Creating iterable views of maps
	Collecting entries
	Finding, testing and putting values

	Collections and containers
	Basic collection types
	MutableList
	MutableSet
	MutableMap
	MutableBag
	Multimap

	Creating and converting collections
	Protecting collections
	Immutable collections
	Protective wrappers

	Code blocks
	Common code block types
	Predicate
	Function
	Procedure

	Utility GS Collections
	Utility iteration patterns
	Parallel iteration

